Open Access
Issue
JNWPU
Volume 39, Number 1, February 2021
Page(s) 09 - 16
DOI https://doi.org/10.1051/jnwpu/20213910009
Published online 09 April 2021
  1. Tu Shandong. High temperature structural integrity[M]. Beijing: Science Press, 2003 (in Chinese) [Google Scholar]
  2. Singh G, Satyanarayana D V V, et al. Upadrasta ramamurty enhancement in creep resistance of Ti-6Al-4V alloy due to boron addition[J]. Materials Science & Engineering A, 2014(597): 194–203 [Article] [Google Scholar]
  3. Adriano Gonçalves dos Reis, Danieli aparecida pereira reis, Carlos de moura neto, et al. Creep behavior study at 500°C of laser nitrided Ti-6Al-4V alloy[J]. Journal of materials research and Technology, 2013, 2(1): 48–51 [Article] [Google Scholar]
  4. Ma Xiaojian. Research on life predition methods for high temperature components in short life turbine engine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012 (in Chinese) [Google Scholar]
  5. Xiang Yanxun, Zhu Wujun, Liu Changjun, et al. Creep degradation characterization of titanium alloy using nonlinear ultrasonic technique[J]. NDT & E International, 2015(72): 41–49 [Article] [Google Scholar]
  6. Hyde C J, Hyde T H, Sun W, et al. Damage mechanics based predictions of creep crack growth in 316 stainless steel[J]. Engineering Fracture Mechanics, 2010(77): 2385–2420 [Article] [Google Scholar]
  7. Zhang Yucai, Jiang Wenchun, Tu Shantung, et al. Creep crack growth behavior analysis of the 9Cr-1Mo steel by a modified creep-damage model[J]. Materials Science & Engineering A, 2017(708): 68–76 [Google Scholar]
  8. He J Z, Wang G Z, Tu S T, et al. Characterization of 3-D creep constraint and creep crack growth rate in test specimens in ASTM-E1457 standard[J]. Engineering Fracture Mechanics, 2016(168): 131–146 [Article] [Google Scholar]
  9. Venugopal S, Sasikala G, Kumar Y. Creep crack growth behavior of a P91 steel weld[J]. Procedia Engineering, 2014(86): 662–668 [Article] [Google Scholar]
  10. Ma H S, Wang G Z, Liu S, et al. In-plane and out-of-plane unified constraint-dependent creep crack growth rate of 316H steel[J]. Engineering Fracture Mechanics, 2016(155): 88–101 [Article] [Google Scholar]
  11. Hu Xiaoan, Shi Duoqing, Yang Xiaoguang, et al. TMF constitutive and life modeling: from smooth specimen to turbine blade[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3): 422494 [Article] (in Chinese) [Google Scholar]
  12. Wen Jianfeng, Tu Shandong. A multiaxial creep-damage model for creep crack growth considering cavity growth and microcrack interaction[J]. Engineering Fracture Mechanics, 2014(123): 197–210 [Article] [Google Scholar]
  13. Hull D, Rimmer D E. The growth of grain boundary voids under stress[J]. Philosophical Magazine, 1959(8): 26–34 [Google Scholar]
  14. Cocks A C F, Ashby M F. Intergranular fracture during power law creep under multi-axial stresses[J]. Met Sci, 1980(14): 395–402 [Article] [Google Scholar]
  15. Ling Xiang, Tu Shantung, Gong Jianming. Application of Runge-Kutta-Merson agorithm for creep damage analysis[J]. International Journal of Pressure Vessels and Piping, 2000(77): 243–248 [Article] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.