Issue |
JNWPU
Volume 36, Number 4, August 2018
|
|
---|---|---|
Page(s) | 778 - 784 | |
DOI | https://doi.org/10.1051/jnwpu/20183640778 | |
Published online | 24 October 2018 |
Investigation of Slotted Tip Parameters on the Aerodynamic Characteristic of Helicopter Rotor
桨尖开孔参数对旋翼流场特性的影响研究
1
School of Aerospace Engineering, Xiamen University, Xiamen 361005, China
2
Science and Technology on Rotorcraft Aeromechanics Laboratory, China Helicopter Research and Development Institute, Jingdezhen 333001, China
Received:
20
May
2017
Numerical simulations are conducted to investigate the effect of helicopter rotor tip vortex alleviation using a slotted tip, and effects of parameters involving location, number, aperture of the slot on tip vortex structure and aerodynamic performance are analyzed in detail. The flow field of hovering helicopter rotor is simulated by solving Navier-Stokes equations in the rotating coordinate system. Finite volume method combined with overset unstructured grids algorithm are adopted. The calculation of inviscid fluxes uses second-order central scheme with artificial dissipation, and turbulence model utilizes Spalart-Allmaras model. Simulation results show that the location of the slot has little effect on tip vortex alleviation. The larger the number and aperture of the slot, the better the effect of slotted tips weakening tip vortex. Lift coefficient of helicopter rotor with a slotted tip increases slightly compared with that without slots, while power coefficient increases drastically.
摘要
采用CFD数值模拟方法开展了基于桨尖开孔的旋翼桨尖涡抑制研究,重点分析了开孔位置、数目、直径等参数对桨尖涡结构和旋翼气动性能的影响。旋翼流场数值模拟通过求解旋转坐标系下的Navier-Stokes方程,采用格点格式的有限体积法,结合非结构重叠网格技术。无黏通量计算采用二阶中心格式加人工耗散,湍流模型采用Spalart-Allmaras模型。数值研究表明:桨尖开孔的位置对桨尖涡削弱效果的影响很小;开孔数目越多,孔径越大,桨尖涡的削弱效果越好;开孔旋翼的升力系数较无开孔构型小幅增加,而功率系数则较大幅度增加。
Key words: slotted tips / parameter of slots / tip-vortex alleviation / helicopter rotor / numerical simulation
关键字 : 开孔桨尖 / 开孔参数 / 桨尖涡抑制 / 旋翼 / 数值模拟
© 2018 Journal of Northwestern Polytechnical University. All rights reserved.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.