Issue |
JNWPU
Volume 36, Number 5, October 2018
|
|
---|---|---|
Page(s) | 919 - 925 | |
DOI | https://doi.org/10.1051/jnwpu/20183650919 | |
Published online | 17 December 2018 |
Thermal Analyses of Active-Cooled Strut in RBCC Engine
RBCC燃料支板主动冷却的换热特性研究
Science and Technology on Combustion, Internal Flow and Thermo-Structure Laboratory, School of Astronautics, Northwestern Polytechnical University, Xi’an
710072, China
Received:
9
September
2017
Fuel-injection strut is an efficient way to increase the depth of fuel penetration and strengthen the mixing process of hot gas in supersonic combustor. With a validated numerical model, this article analyzed the effects of leading edge's radius, wall thickness and mass flow distribution on cooling efficiency of fuel-injection strut and proposed an optimizing strategy for active-cooled strut. Results showed that the larger radius of leading edge not only decreased the heat flux on the leading edge, but also has a negative effect on the aerodynamic performance of strut; and a thinner wall could enhance the cooling efficiency and uniformize the temperature distribution of the wedge; furthermore, the flow distribution of inlet coolant had a significant impact on the heat transfer and flow processes, an optimized way of flow distribution was obtained by comparing three different ways of distribution.
摘要
针对典型的宽域工作火箭冲压组合循环发动机中的主动冷却燃料支板的基准构型,采用经过校验的数值模拟方法,开展了前缘半径、壁厚、流量分配方式对支板冷却效果的影响因素分析,完成了支板主动冷却通道的几何参数及流量分配策略的参数优选研究。结果表明,在其他参数相同的条件下,前缘热流随着前缘半径的增大而减小,且横截面温度分布更加均匀,但同时对支板的气动性能影响也逐渐增大;另外,壁厚的增大会降低支板的冷却效果,且壁厚越小,在前缘上的热流分布越均匀;同时,通过对比3种冷却剂分配方式的数值模拟结果可知,冷却剂更多地分配给前缘等受热严重区域可以增强特征区域的冷却效果,但全部集中在支板前缘会增大通道内压力损失,因此由尖劈部分的多个通道进入的分配方案最优,既能提高前缘冷却效率,又能保证对其他部分的有效冷却。通过开展支板主动冷却通道布局优化和影响规律分析,显著降低了燃料支板对冷却流量的需求,并为燃料支板的主动冷却结构设计提供了依据。
Key words: strut / active-cooling / numerical simulation / flow distribution
关键字 : 燃料支板 / 主动冷却 / 数值模拟 / 流量分配
© 2018 Journal of Northwestern Polytechnical University. All rights reserved.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.