Issue |
JNWPU
Volume 37, Number 1, February 2019
|
|
---|---|---|
Page(s) | 87 - 92 | |
DOI | https://doi.org/10.1051/jnwpu/20193710087 | |
Published online | 03 April 2019 |
Underwater Acoustic Target Feature Fusion Method Based on Multi-Kernel Sparsity Preserve Multi-Set Canonical Correlation Analysis
基于多核稀疏保持投影的多特征集典型相关分析的水下目标特征融合方法
School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China
Received:
1
March
2018
To solve high-dimensional and small-sample-size classification problem for underwater target recognition, a new feature fusion method is proposed based on multi-kernel sparsity preserve multi-set canonical correlation analysis. The multi-set canonical correlation analysis algorithm is used to quantitatively analyze the correlation of multi-domain features, remove redundant and noise features, in order to achieve multi-domain feature fusion. The multi-kernel sparsely preserved projection algorithm is used to constrain the sparse reconstruction of the extracted multi-domain feature samples, which enhances the feature's classification ability. Results of applying real radiated noise datasets to underwater target recognition experiments show that our new method can effectively remove the redundancy and noise features, achieve the fusion of multi-domain underwater target features, and improve the recognition accuracy of underwater targets.
摘要
针对水下目标识别特征样本集高维小样本问题,提出了基于多核稀疏保持投影的多特征集典型相关分析的水下目标特征融合方法。该方法用多特征集典型相关分析算法对多域特征的整体相关程度进行定量分析,去除冗余和噪声特征,实现多域特征的融合,并利用多核稀疏保持投影算法,对提取的多域特征样本的稀疏重构性加以约束,增强了特征的判别能力。利用实测舰船辐射噪声数据验证基于核稀疏保持投影的多特征集典型相关分析的水下目标特征融合方法的有效性,与多特征集典型相关分析方法和核稀疏保持投影典型相关分析方法进行了对比,实验研究表明,提出的方法可以有效去除冗余和噪声特征,实现多域水下目标特征的融合,提高水下目标的识别正确率。
Key words: canonical correlation analysis / kernel sparsity preserving projections / feature fusion / underwater acoustic target recognition
关键字 : 多特征集典型相关分析 / 核稀疏保持投影算法 / 特征融合 / 水下目标识别
© 2019 Journal of Northwestern Polytechnical University
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.