Open Access
 Issue JNWPU Volume 40, Number 5, October 2022 962 - 969 https://doi.org/10.1051/jnwpu/20224050962 28 November 2022

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

## 1 增材制造钛合金的拉伸断裂试验

### 1.1 试件的制备

Ti-6Al-4V粉末成分 %

 图1增材制造钛合金的光滑圆棒试件几何尺寸
 图2增材制造钛合金的缺口圆棒试件几何尺寸

### 1.3 光滑圆棒试验结果

 图3光滑圆棒试件的位移载荷曲线

### 1.4 缺口圆棒试验结果

 图4不同缺口半径的缺口圆棒试件位移载荷曲线

## 2 拉伸试验的数值模拟

### 2.1 有限元模型

 图5迭代修正和试验获得的塑性应变-真实应力曲线
 图6不同缺口半径的增材制造钛合金缺口圆棒试件在单轴拉伸载荷下的试验与数值仿真结果比较

### 2.2 应力三轴度和应力应变分布

Bridgman(1952)[15]经推导得到, 缺口圆棒的应力三轴度最大值出现在最小截面的中心处, 应力三轴度的数值可由Bridgman公式(1)得到

 图7缺口圆棒试件中心处的应力三轴度随加载位移的变化
 图8不同缺口半径的缺口圆棒试件的应力三轴度分布图
 图9不同缺口半径的缺口圆棒试件的等效应力分布图

## 3 断口形貌分析

 图10扫描电镜下缺口圆棒试件的拉伸断口形貌

## References

1. WANG Huaming. Materials'fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronauticaet Astronautica Sinca, 2014, 35(10): 2690–2698 [Article] (in Chinese) [Google Scholar]
2. YI Min, CHANG Ke, LIANG Chenguang, et al. Computational study of evolution and fatigue dispersity of microstructures by additive manufacturing[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3263–3273 [Article] (in Chinese) [Google Scholar]
3. GONG H, RAFI K, GU H, et al. Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion additive manufacturing processes[J]. Additive Manufacturing, 2014, 1/2/3/4: 87–98 [CrossRef] [Google Scholar]
4. CARROLL B E, PALMER T A, BEESE A M. Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing[J]. Acta Materialia, 2015, 87: 309–320 [Article] [CrossRef] [Google Scholar]
5. WANG P, TAN X P, HE C Y, et al. Scanning optical microscopy for porosity quantification of additively manufactured components[J]. Additive Manufacturing, 2018, 21: 350–358 [Article] [CrossRef] [Google Scholar]
6. SAMES W J, LIST F A, PANNALA S, et al. The metallurgy and processing science of metal additive manufacturing[J]. International Materials Reviews, 2016, 61(5): 315–360 [Article] [CrossRef] [Google Scholar]
7. VILARO T, COLIN C, BARTOUTJ D. As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting[J]. Metallurgical and Materials Transactions A, 2011, 42:3190–3199 [Article] [CrossRef] [Google Scholar]
8. GU H, GONG H, PAL D, et al. Influences of energy density on porosity and microstructure of selective laser melted 17-4PH stainless steel[C]//24th Annual International Solid Freeform Fabrication Symposium, Austin, TX, 2013 [Google Scholar]
9. BISWAL R, ZHANG X, SYED A K, et al. Criticality of porosity defects on the fatigue performance of wire+arc additive manufactured titanium alloy[J]. International Journal of Fatigue, 2019, 122: 208–217 [Article] [CrossRef] [Google Scholar]
10. KRAMER S L B, JONES A, MOSTAFA A, et al. The third sandia fracture challenge: predictions of ductile fracture in additively manufactured metal[J]. International Journal of Fracture, 2019, 218: 5–61 [Article] [CrossRef] [Google Scholar]
11. JIANG W, LI Y Z, SU J. Modified GTN model for a broad range of stress states and application to ductile fracture[J]. European Journal of Mechanics-A/Solids, 2016, 57: 132–148 [Article] [CrossRef] [Google Scholar]
12. YI Haijiao, ZHEN Ying, CAO Yuguang, et al. Research on the relationship between fracture strain and triaxiality of 6061-T6 aluminum alloy[J]. Journal of Mechanical Strength, 2020, 42: 551–558 [Article] (in Chinese) [Google Scholar]
13. ZHANG Shuangyin, SUO Tao, LI Yulong. In-situ SEM study on deformation and failure mechanism of TC4 titanium alloy by laser additive manufacturing[J]. Journal of Northwestern Polytechnical University, 2020, 38(5): 1025–1029 [Article] [Article] (in Chinese) [CrossRef] [EDP Sciences] [Google Scholar]
14. AI Xiaopeng. Effects of anisotropy on mechanical properties of TC4 titanium alloy fabricated by additive manufacturing[D]. Xi'an: Northwestern Polytechnical University, 2019(in Chinese) [Google Scholar]
15. BRIDGMAN P W. Studies in large plastic flow and fracture[M]. New York: McGraw-Hill, 1952 [Google Scholar]
16. ALGARNI M. Notch factor correction using stress triaxiality of plane-stress state in high-cycle fatigue[J]. International Journal of Fatigue, 2019, 128: 105204[Article] [CrossRef] [Google Scholar]

Ti-6Al-4V粉末成分 %

## All Figures

 图1增材制造钛合金的光滑圆棒试件几何尺寸 In the text
 图2增材制造钛合金的缺口圆棒试件几何尺寸 In the text
 图3光滑圆棒试件的位移载荷曲线 In the text
 图4不同缺口半径的缺口圆棒试件位移载荷曲线 In the text
 图5迭代修正和试验获得的塑性应变-真实应力曲线 In the text
 图6不同缺口半径的增材制造钛合金缺口圆棒试件在单轴拉伸载荷下的试验与数值仿真结果比较 In the text
 图7缺口圆棒试件中心处的应力三轴度随加载位移的变化 In the text
 图8不同缺口半径的缺口圆棒试件的应力三轴度分布图 In the text
 图9不同缺口半径的缺口圆棒试件的等效应力分布图 In the text
 图10扫描电镜下缺口圆棒试件的拉伸断口形貌 In the text

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.