Open Access
 Issue JNWPU Volume 42, Number 1, February 2024 28 - 34 https://doi.org/10.1051/jnwpu/20244210028 29 March 2024

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1 计算模型及方法

1.2 计算流域及网格

 图1航行体及尾舵附近网格示意图

2 计算方法验证

2.1 网格独立性验证

 图2不同网格策略尾舵截面翼型压力系数和摩擦系数分布

3 计算结果与分析

3.1 尾舵不同展开速率状态水动力载荷分析

 图3不同展开速率尾舵阻尼力和阻尼力矩

 图4尾舵流域中间截面的速度矢量图
 图5尾舵表面压力云图

3.2 尾舵不同攻角状态水动力载荷分析

3种不同攻角尾舵水动力载荷

 图6尾舵压力系数分布

3.3 尾舵展开前后水动力载荷分析

 图7尾舵流域中间截面压力云图

4 结论

1) 尾舵展开速率越高, 在尾舵展开末程时所需的尾舵驱动力矩越小, 原因在于展开速率越高非定常效应增强, 带动舵后流体发生随体运动, 而展开速率较小时非定常流动趋于稳定, 舵根尾缘较大的迎流面积形成低压区域, 使其阻尼力和阻尼力矩较大;

2) 尾舵展开时攻角增大, 舵根位置吸力面负压力峰更为明显, 舵梢吸力面产生了低于尾缘面的压力, 二者降低了尾舵展开后的轴向阻尼力, 阻尼力矩也随之减小;

3) 尾舵展开前后, 尾舵附近流动滞止面变化使其阻力、阻尼力矩大幅提升, 压差作用的改变使得垂直于流向的法向力大小和方向都发生变化。

References

1. NOURI N M, MADOLIAT, R, YAHANGARDY Y, et al. A study on the effect of fluctuations of the supercavity parameters[J]. Experimengtal Thermal & Fluid Science, 2015, 60: 188–200 [CrossRef] [Google Scholar]
2. ZHANG Yuwen, YUAN Xulong, DENG Fei. Fluid dynamics of supercavitating underwater vehicles[M]. Beijing: National Defense Industry Press, 2014 (in Chinese) [Google Scholar]
3. FAN Guofang, LI Qiang, CAO Xiaolong, et al. Numerical study on aerodynamic load of a high-speed aircraft folding wing in its deploying procedure[J]. Physics of Gases, 2017, 2(6): 48–53 [Article] (in Chinese) [Google Scholar]
4. LI Dong, LI Bin, LIU Xianming. Analysis on aerodynamic loads during deployment of folded tails of an air-to-air missile[J]. Journa1 of Projectiles, Rockets, Missiles and Guidance, 2014, 34(3): 154–156 [Article] (in Chinese) [Google Scholar]
5. TONG Liyong. Numerical simulation on hydrodynamic characteristics of rudders of supercavitating vehicle on maneuvering condition[J]. Journal of Ship Mechanics, 2015, 19(7): 765–772 [Article] (in Chinese) [Google Scholar]
6. HUANG Chuang, DANG Jianjun, LUO Kai, et al. Numerical simulation and water tunnel experiment on the stalling characteristics of wedge rudders[J]. Journal of Harbin Institute of Technology, 2016, 48(10): 125–130 [Article] (in Chinese) [Google Scholar]
7. XU Chang, KHOO Boocheong. Numerical investigation on free surface effect on the supercavitating flow over a low aspect ratio wedge-shaped hydrofoil[J]. Journal of Hydrodynamics, 2020, 32(1): 20–30 [Article] [NASA ADS] [CrossRef] [Google Scholar]
8. YANG Dongmei, SHAO Fei, LI Chuanglan, et al. Overlapping gird technique for numerical simulation of a fast-cruising catamaran fitted with active T-Foils[J]. Journa1 of Marine Science and Application, 2019, 18(2): 176–184 [NASA ADS] [CrossRef] [Google Scholar]
9. CHEN Hao, QIAN Ling, MA Zhihua, et al. application of an overset mesh based numerical wave tank for modelling realistic free-surface hydrodynamic problems[J]. Ocean Engineering, 2019, 176(3): 97–117 [NASA ADS] [CrossRef] [Google Scholar]
10. ZHANG Yuwen. Configuration design of torpedo[M]. Xi’an: Northwestern Polytechnical University Press, 1998 (in Chinese) [Google Scholar]

3种不同攻角尾舵水动力载荷

All Figures

 图1航行体及尾舵附近网格示意图 In the text
 图2不同网格策略尾舵截面翼型压力系数和摩擦系数分布 In the text
 图3不同展开速率尾舵阻尼力和阻尼力矩 In the text
 图4尾舵流域中间截面的速度矢量图 In the text
 图5尾舵表面压力云图 In the text
 图6尾舵压力系数分布 In the text
 图7尾舵流域中间截面压力云图 In the text

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.