Open Access
Issue
JNWPU
Volume 36, Number 3, June 2018
Page(s) 456 - 463
DOI https://doi.org/10.1051/jnwpu/20183630456
Published online 08 October 2018
  1. Zheng Tikuan. Thermal Power Plant[M]. Beijing, China Electric Power Press, 2001 [Google Scholar]
  2. Wen Gao. Power Plant Air Cooling Technology[M]. Beijing, China Electric Power Press, 2008 [Google Scholar]
  3. Lu Futian. Technological and Economic Comparison of Direct Air Cooling and Indirect Air Cooling in 1000 MW Unit Thermal Power Plant[J]. China Power(Technology Version), 2012 7):66-68 (in Chinese) [Article] [Google Scholar]
  4. Zhu Dahong, Feng Jing. Technical Research of Design for SCAL-Type Indirect Air-Cooling System[C]//Proceedings of the 4th Technical Seminar for Air-Cooled Discipline, 2011 (in Chinese) [Google Scholar]
  5. Zhao Xian, Feng Jing. Optimization Parameters for SCAL-Type Indirect Air-Cooling System[J]. Electric Power Construction, 2012, 33(2):67-70 (in Chinese) [Article] [Google Scholar]
  6. Xi Xinming, Wang Mengjie, Du Xiaoze, et al. Airflow Field Characteristics in Indirect Dry Cooling Tower of Three Incorporate Towers System[J]. Proceedings of the CSEE, 2015, 35(23):6089-6098 (in Chinese) [Article] [Google Scholar]
  7. Du Preez Abraham Francois. The Influence of Cross-Wind on the Performance of Natural Draft Dry-Cooling Towers[D]. Stellenbosch, South Africa, University of Stellenbosch, 1992 [Article] [Google Scholar]
  8. Du Preez A F, Kriiger D G. Experimental Investigation Into the Influence of Cross-Winds on the Performance of Dry-Cooling Towers[J]. N & O Joernaal, 1993, 9(2):1-11 [Article] [Google Scholar]
  9. Goodarzi M. A Proposed Stack Configuration for Dry Cooling Tower to Improve Cooling Efficiency under Crosswind[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(12):858-863 [Article] [CrossRef] [Google Scholar]
  10. Zhai Zhiqiang. Experimental and Numerical Study on the Performance of Natural Ventilation Dry-Cooling Tower Influenced by Crosswind[J]. Thermal Power Generation, 1997 3):3-7 (in Chinese) [Article] [Google Scholar]
  11. Yang Lijun, Du Xiaoze, Yang Yongping. Numerical Simulation of Operation Characteristics for Air-Cooled Radiator in Indirect Air Cooling System[J]. Journal of Power Engineering, 2008, 28(4):594-599 (in Chinese) [Article] [Google Scholar]
  12. Pu Yongdong, Yang Lijun, Du Xiaoze, et al. A Numerical Approach to Off-Design Performance of Dry Cooling Systems in Power Plants[J]. Proceedings of the CSEE, 2012, 32(35):66-73 (in Chinese) [Article] [Google Scholar]
  13. Huang Chunhua, Zhao Shun’an. Research on Optimization of Tower Type in Indirect Dry Cooling System[J]. Journal of China Institute of Water Resources and Hydropower Research, 2011, 9(4):313-319 (in Chinese) [Article] [Google Scholar]
  14. Huang Chunhua, Zhao Shun’an. Research on Resistance Performance of Indirect Dry Cooling Tower[J]. Journal of China Institute of Water Resources and Hydropower Research, 2011, 9(3):195-199 (in Chinese) [Article] [Google Scholar]
  15. Derkson D D, Bender T J, Bergstrom D J, et al. A Study on the Effects of Wind on the Air Intake Flow Rate of a Cooling Tower:Part 1.Wind Tunnel Study[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1996, 64(1):47-59 [Article] [CrossRef] [Google Scholar]
  16. Bender J T, Bergstrom J D. A Study on the Effects of Wind on the Air Intake Flow Rate of a Cooling Tower:Part 2. Wind Wall Study[J]. Journal of Wind Engineering and Industrial Aerody, 1996 64):61-72 [Article] [CrossRef] [Google Scholar]
  17. Du Preez A F, Kröger D G. The Effect of the Heat Exchanger Arrangement and Wind-Break Walls on the Performance of Natural Draft Dry-Cooling Towers Subjected to Cross-Winds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1995 58):293-303 [Article] [CrossRef] [Google Scholar]
  18. Du Preez A F, Kröger D G. Effect of Wind on Performance of a Dry-Cooling Tower[J]. Heat Recovery Systems and CHP, 1993, 13(2):139-146 [Article] [CrossRef] [Google Scholar]
  19. Alwaked R, Behnia M. The Performance of Natural Draft Dry Cooling Towers under Crosswind:CFD Study[J]. International Journal of Energy Research, 2004, 28 147-161 [Article] [CrossRef] [Google Scholar]
  20. Goudarzi M A. Proposing a New Technique to Enhance Thermal Performance and Reduce Structural Design Wind Loads for Natural Drought Cooling Towers[J]. Energy, 2013, 62 164-172 [Article] [CrossRef] [Google Scholar]
  21. Salazar J M, Diwekar U, Constantinescu E, et al. Stochastic Optimization Approach to Water Management in Cooling-Constrained Power Plants[J]. Applied Energy, 2013, 112 12-22 [Article] [CrossRef] [Google Scholar]
  22. Rafat Al-Wakeda M B. The Effect of Windbreak Walls on the Thermal Performance of Natural Draft Dry Cooling Towers[J]. Heat Transfer Engineering, 2005, 26(8):50-62 [Article] [NASA ADS] [Google Scholar]
  23. Zhao Yuanbin. Numerical Analysis of Cooling Performance of Wet-Cooling Tower with Cross Wall[J]. Proceedings of the CSEE, 2009, 29(8):6-13 (in Chinese) [Article] [Google Scholar]
  24. Lu Y, Guan Z, Gurgenci H, Zou Z, et al. Windbreak Walls Reverse the Negative Effect of Crosswind in Short Natural Draft Dry Cooling Towers into a Performance Enhancement[J]. International Journal of Heat and Mass Transfer, 2013 63):162-170 [Article] [CrossRef] [Google Scholar]
  25. Zhai Zhiqiang, Zhu Keqin, Fu Song. Model Experimental Study on the Air Flow Field of a Natural Ventilation Dry-Cooling Tower Influenced by Crosswind[J]. Experimental Mechanics, 1997, 12(3):306-311 (in Chinese) [Article] [Google Scholar]
  26. Zhai Zhiqiang, Fu Song, Zhu Keqin. Experimental Comparison Study on the Characteristics of Flow Fields and Related Improvement Schemes of the Single-Tower and Double-Tower under Crosswind[J]. Journal of Aerodynamics, 1999, 17(1):30-38 (in Chinese) [Article] [Google Scholar]
  27. Madadnia J, Koosha H. Effect of Wind Break Walls on Performance of a Cooling Tower Model[J]. Mech & Aerospace Eng J, 2008, 3(4):61-67 [Article] [Google Scholar]
  28. John D, Anderson J R. Introduction to Computational Fluid Dynamics[M]. Translated by Yao Chaohui, Zhou Qiang. Beijing, Tsing University Press, 2002 [Google Scholar]
  29. Tao Wenquan. Numerical Heat Transfer Second Edition Xi’an, Xi’an Jiaotong University Press, 2002 [Google Scholar]
  30. Su M D, Tang G F, Fu S. Numerical Simulation of Fluid Flow and Thermal Performance of a Dry-Cooling Tower under Cross Wind Condition[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 79(3):289-306 [Article] [CrossRef] [Google Scholar]
  31. Shi Lei, Shi Cheng, Yu Zhe, et al. Numerical Research on Flow and Heat Transfer Characteristics of Air Cooling Tower with Surface Indirect Air Cooled Radiator[J]. Journal of Xi’an University of Architecture & Technology:Natural Science Edition, 2011, 43(4):535-540 (in Chinese) [Article] [Google Scholar]
  32. Yang Lijun, Jia Sining, Bu Yongdong, et al. Numerical Study on Flow and Heat Transfer Characteristics of Finned Tube Bundles for Air-Cooled Heat Exchangers of Indirect Dry Cooling Systems in Power Plants[J]. Proceedings of the CSEE, 2012, 32(32):50-57 (in Chinese) [Article] [Google Scholar]
  33. Tang D M, Fu S. Numerical Simulation of Fluid Flow and Thermal Performance of a Dry-Cooling Tower under Cross Wind Condition[J]. Journal of Wind Engineering and Industrial Aerodyn, 1999 79):289-306 [Article] [Google Scholar]
  34. Wang Weiliang, Ni Weidou, Wang Zhe, et al. A Review on the Research of a Dry Cooling Tower Affected by Cross Wind[J]. Proceedings of the CSEE, 2015, 35(4):882-890 (in Chinese) [Article] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.