Open Access
Issue
JNWPU
Volume 36, Number 4, August 2018
Page(s) 627 - 635
DOI https://doi.org/10.1051/jnwpu/20183640627
Published online 24 October 2018
  1. Martins F N, Celeste W C, Carelli R, et al. An Adaptive Dynamic Controller for Autonomous Mobile Robot Trajectory Tracking[J]. Control Engineering Practice, 2008, 16(11): 1354-1363 [Article] [CrossRef] [Google Scholar]
  2. Rusu P, Petriu E M, Whalen T E, et al. Behavior-Based Neuro-Fuzzy Controller for Mobile Robot Navigation[J]. IEEE Trans on Instrumentation & Measurement, 2002, 52(4): 1335-1340 [Article] [CrossRef] [Google Scholar]
  3. Tzafestas S G. Introduction to Mobile Robot Control, London, Elsevier, 2014 [Google Scholar]
  4. Muir P F, Neuman C P. Kinematic Modeling for Feedback Control of an Omnidirectional Wheeled Mobile Robot[C]//Proceedings of the IEEE International Conference on Robotics and Automation, 1987: 1772-1778 [Google Scholar]
  5. Tlale N, De Villiers M. Kinematics and Dynamics Modelling of a Mecanum Wheeled Mobile Platform[C]//IEEE International Conference on Mechatronics and Machine Vision in Practice, 2008: 657-662 [Google Scholar]
  6. Wampfler G, Salecker M, Wittenburg J. Kinematics, Dynamics, and Control of Omnidirectional Vehicles with Mecanum Wheels[J]. Mechanics Based Design of Structures and Machines, 1989, 17(2): 165-177 [Article] [CrossRef] [Google Scholar]
  7. Shimada A, Yajima S, Viboonchaicheep P, et al. Mecanum-Wheel Vehicle Systems Based on Position Corrective Control[C]//31st Annual Conference of IEEE Industrial Electronics Society, 2005: 2077-2082 [Google Scholar]
  8. Wang Z P, Yang W R, Ding G X. Sliding Mode Control for Trajectory Tracking of Nonholonomic Wheeled Mobile Robots Based on Neural Dynamic Model[C]//Second WRI Global Congress on Intelligent Systems, 2010: 270-273 [Google Scholar]
  9. Viet T D, Doan P T, Hung N, et al. Tracking Control of a Three-Wheeled Omnidirectional Mobile Manipulator System with Disturbance and Friction[J]. Journal of Mechanical Science and Technology, 2012, 26(7): 2197-2211 [Article] [CrossRef] [Google Scholar]
  10. Fierro R, Lewis F L. Control of a Nonholonomic Mobile Robot Using Neural Networks[J]. IEEE Trans on Neural Networks, 1998, 9(4): 589-600 [Article] [CrossRef] [Google Scholar]
  11. Xu D, Zhao D, Yi J, et al. Trajectory Tracking Control of Omnidirectional Wheeled Mobile Manipulators:Robust Neural Network-Based Sliding Mode Approach[J]. IEEE Trans on Systems Man & Cybernetics Part B, 2009, 39(3): 788-799 [Article] [CrossRef] [Google Scholar]
  12. Wang J, Lu Z, Chen W, et al. An Adaptive Trajectory Tracking Control of Wheeled Mobile Robots[C]//Proceedings of the IEEE Conference on Industrial Electronics and Applications, 2011: 1156-1160 [Google Scholar]
  13. Sira-Ramirez H, Barrios-Cruz E, Marquez R J. Fast Adaptive Trajectory Tracking Control of a Completely Uncertain DC Motor via Output Feedback[C]//Proceedings of the IEEE Conference on Decision and Control, 2007: 4197-4202 [Google Scholar]
  14. Savkin A V, Pathirana P N, Faruqi F A. The Problem of Precision Missile Guidance: LQR and H Control Frameworks[C]//Proceedings of the IEEE Conference on Decision and Control, 2001: 1535-1540 [Google Scholar]
  15. Nurdin H I, James M R, Petersen I R. Coherent Quantum LQG Control[J]. Automatica, 2009, 45(8): 1837-1846 [Article] [CrossRef] [Google Scholar]
  16. Utkin V I, Guldner J, Shi J. Sliding Mode Control in Electro-Mechanical Systems, Boca Raton CRC Press, 2009, 881-886 [Google Scholar]
  17. Zhang Y, Ma G F, Guo Y N, et al. A Multi Power Reaching Law of Sliding Mode Control Design and Analysis[J]. Acta Automatica Sinica, 2013 [Article] [Google Scholar]
  18. Liu Jinkun. Sliding Mode Control Design Matlab Simulation[M]. 2nd ed. Beijing, Tsinghua University Press, 2012 (in Chinese) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.