Open Access
Volume 36, Number 6, December 2018
Page(s) 1027 - 1036
Published online 12 March 2019
  1. Graham W R, Hall C A, Morales M V. The Potential of Future Aircraft Technology for Noise and Pollutant Emissions Reduction [J]. Transport Policy, 2014, 34: 36–51 [Article] [CrossRef] [Google Scholar]
  2. Joslin R D. Aircraft Laminar Flow Control[J]. Annual Review of Fluid Mechanics, 1998, 30 (1): 1–29 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  3. Zhu Ziqiang, Wu Zongcheng, Ding Juchun. Laminar Flow Control Technology and Application[J]. Acta aeronautica et Astronautica Sinica, 2011, 32(5):765–784 (in Chinese) [Article] [Google Scholar]
  4. Malik M R, Crouch J D, Saric W S, et al. Application of Drag Reduction Techniques to Transport Aircraft[M]. New Jersey, John Wiley & Sons, Ltd, 2015 [Google Scholar]
  5. Fujino M. Design and Development of the HondaJet[J]. Journal of aircraft, 2005, 42(3): 755–764 [Article] [CrossRef] [Google Scholar]
  6. Drela M. Development of the D8 Transport Configuration[C]//29th AIAA Applied Aerodynamics Conference, 2011 [Google Scholar]
  7. Yao S, Guo D, Sun Z, et al. Optimization Design for Aerodynamic Elements of High Speed Trains[J]. Computers & Fluids, 2014, 95: 56–73 [Article] [CrossRef] [Google Scholar]
  8. Samareh J A. Survey of Shape Parameterization Techniques for High-Fidelity Multidisciplinary Shape Optimization[J]. AIAA Journal, 2001, 39 (5): 877–884 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  9. Song W, Keane A J. Surrogate-Based Aerodynamic Shape Optimization of a Civil Aircraft Engine Nacelle[J]. AIAA Journal, 2007, 45(10): 2565 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  10. Lépine J, Guibault F, Trepanier J Y, et al. Optimized Nonuniform Rational B-Spline Geometrical Representation for Aerodynamic Design of Wings[J]. AIAA Journal, 2001, 39(11): 2033–2041 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  11. Kulfan B M. Universal Parametric Geometry Representation Method[J]. Journal of Aircraft, 2008, 45(1): 142–158 [Article] [CrossRef] [Google Scholar]
  12. Sederberg T W, Parry S R. Freeform Deformation of Solid Geometric Models[J]. Computer Graphics, 1986, 22(4): 151–160 [Article] [CrossRef] [Google Scholar]
  13. Kulfan B M, Bussoletti J E, Hilmes C L. Aerodynamic Characteristics of Bodies of Revolution at Near-Sonic Speeds[J]. Journal of Aircraft, 2007, 44(6): 1815–1841 [Article] [CrossRef] [Google Scholar]
  14. Fang X, Zhang Y, Chen H. Transonic Nacelle Aerodynamic Optimization Based on Hybrid Genetic Algorithm[C]//17th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2016 [Google Scholar]
  15. Robinson M, MacManus D G, Heidebrecht A, et al. An Optimization Method for Nacelle Design[C]//55th AIAA Aerospace Sciences Meeting, 2017 [Google Scholar]
  16. He Xiaolong, Bai Junqiang, Xia Lu, et al. Natural Laminar Flow Nacelle Optimization Design Based on EFFD Method[J]. Journal of Aerospace Power, 2014, 29(10): 2311–2320 (in Chinese) [Article] [Google Scholar]
  17. Li J, Gao Z, Huang J, et al. Aerodynamic Design Optimization of Nacelle/Pylon Position on an Aircraft[J]. Chinese Journal of Aeronautics, 2013, 26(4): 850–857 [Article] [CrossRef] [Google Scholar]
  18. Lamousin H J, Waggenspack N N. NURBS-Based Free-Form Deformations[J]. IEEE Computer Graphics and Applications, 1994, 14(6): 59–65 [Article] [CrossRef] [Google Scholar]
  19. Ahn W, Lee D Y. Real-Time Resolution of Self-Intersection in Dynamic Cylindrical Free-Form Deformation[J]. IEEE Trans on Visualization and Computer Graphics, 2011, 17(4): 515–526 [Article] [CrossRef] [Google Scholar]
  20. Masters D A, Taylor N J, Rendall T C S, et al. Geometric Comparison of Aerofoil Shape Parameterization Methods[J]. AIAA Journal, 2017, 55(5): 1–15 [Article] [CrossRef] [Google Scholar]
  21. Gatlin G M, Rivers M B, Goodliff S L, et al. Experimental Investigation of the DLR-F6 Transport Configuration in the National Transonic Facility[C]//26th AIAA Applied Aerodynamics Lonference, 2008 [Google Scholar]
  22. Chen Song, Bai Junqiang, Shi Yayun, et al. Aerodynamic Shape Optimization Design of Civil Jet Wing-Body-Tail Configuration[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(10): 3195–3207 (in Chinese) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.