Open Access
Issue
JNWPU
Volume 37, Number 1, February 2019
Page(s) 143 - 151
DOI https://doi.org/10.1051/jnwpu/20193710143
Published online 03 April 2019
  1. Liu Jianhua. Digital Assembly Technology in Military Industry[J]. Defense Manufacturing Technology, 2011(4): 5-7 (in Chinese) [Article] [Google Scholar]
  2. Xiao Hong. Research on the Key Technologies of Mobile Three-Dimensional Model for Assembly Site of Complex Product[D]. Xi'an, Northwestern Polytechnical University, 2014 (in Chinese) [Google Scholar]
  3. Chen Xianghui. Research of Satellite Assembly Induced System Based on Augmented Reality[D]. Shanghai, Huazhong University of Science and Technology, 2016 (in Chinese) [Google Scholar]
  4. Tombari F, Franchi A, Stefano L D. BOLD Features to Detect Textureless Objects[C]//IEEE International Conference on Computer Vision Sydney, 2014: 1265-1272 [Google Scholar]
  5. Damen D, Bunnun P, Calway A, et al. Real-Time Learning and Detection of 3D Textureless Objects: a Scalable Approach[C]//The British Machine Vision Conference, Guildford, 2012: 1-12 [Google Scholar]
  6. Wang G, Wang B, Zhong F, et al. Global Optimal Searching for Textureless 3D Object Tracking[J]. Visual Computer, 2015, 31(6/7/8): 979-988 [Article] [CrossRef] [Google Scholar]
  7. Wang Y, Zhang S S, Yang S, et al. A LINE-MOD-Based Markerless Tracking Approach for AR Applications[J]. International Journal of Advanced Manufacturing Technology, 2017, 89(5/6/7/8): 1699-1707 [Article] [CrossRef] [Google Scholar]
  8. Xu Chi. Research on the 3D Objeet Registration Method in Augmented Reality and Its Application[D]. Shanghai, Huazhong University of Science and Technology, 2011 (in Chinese) [Google Scholar]
  9. Engel J, Stvckler J, Cremers D. Large-Scale Direct SLAM with Stereo Cameras[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems, Hamburg, 2015: 1935-1942 [Google Scholar]
  10. Mur-Artal R, Montiel J M M, TardÍs J D. ORB-SLAM:a Versatile and Accurate Monocular SLAM System[J]. IEEE Trans on Robotics, 2015, 31(5): 1147-1163 [Article] [CrossRef] [Google Scholar]
  11. Fu Mengyin, LÜ Xianwei, Liu Tong, et al. Real-time SLAM Algorithm Based on RGB-D Data[J]. Robot, 2015, 37(6): 683-692 [Article] [Google Scholar]
  12. Radkowski R. Object Tracking with a Range Camera for Augmented Reality Assembly Assistance[J]. Journal of Computing and Information Science in Engineering, 2016, 16(1): 011004 [Article] [CrossRef] [Google Scholar]
  13. Liu Xinchen, Fu Huiyuan, Ma Huadong, et al. Real-time Fingertip Tracking and Gesture Recognition Using RGB-D Camera[J]. Computer Science, 2014, 41(10): 50-52 (in Chinese) [Article] [Google Scholar]
  14. Matsuo T, Fukushima N, Ishibashi Y. Weighted Joint Bilateral Filter with Slope Depth Compensation Filter for Depth Map Refinement[C]//International Conference on Computer Vision Theory and Applications, Berlin, 2015: 313-320 [Google Scholar]
  15. Bian J W, Lin W Y, Matsushita Y, et al. GMS: Grid-Based Motion Statistics for Fast, Ultra-Robust Feature Correspondence[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition, Puerto Rico, 2017: 2828-2837 [Google Scholar]
  16. Shen Yue, Pan Chengkai, Liu Hui, et al. Method of Plant Point Cloud Registration Based on Kinect of Improved SIFT-ICP[J]. Transactions of the Chinese Society of Agricultural, 2017(12): 183-189 (in Chinese) [Article] [Google Scholar]
  17. Henry P, Krainin M, Herbst E, et al. RGB-D Mapping:Using Depth Cameras for Dense 3D Modeling of Indoor Environments[M]. Springer, Berlin Heidebery, 2014: 647-663 [Google Scholar]
  18. Li Tong, Zhang Qizhi. Research of SLAM Loop-Closure Based on ORB Bag of Words[J]. Information & Communications, 2017(10): 20-25 (in Chinese) [Article] [Google Scholar]
  19. Newcombe R A, Izadi S, Hilliges O, et al. Kinect Fusion: Real-Time Dense Surface Mapping and Tracking[C]//IEEE International Symposium on Mixed and Augmented Reality, Basel, 2011: 127-136 [Google Scholar]
  20. Wang Y, Zhang S S, Yang S, et al. Mechanical Assembly Assistance Using Markerless Augmented Reality System[J]. Assembly Automation, 2018, 38(1): 77-87 [Article] [CrossRef] [Google Scholar]
  21. Xu Chi, Li Shiqi, Wang Junfeng, et al. Ocelusion Handling in Augmented Reality Based Virtuecl Assembly[J]. Machinery Oesign & Manufaeture, 2009(12): 256-258 (in Chinese) [Article] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.