Open Access
Volume 37, Number 1, February 2019
Page(s) 203 - 210
Published online 03 April 2019
  1. Donald Howe, Frank Simmons, Don Freund. Development of the Gulfstream Quiet Spike TM for Sonic Boom Minimization[R]. AIAA-2008-0124 [Google Scholar]
  2. Hua R, Ye Z. Drag Reduction Method for Supersonic Missile Based on Busemann Biplane Concept[J]. Chinese Journal of Applied Mechanics, 2012, 29(5): 535-541 [Article] [Google Scholar]
  3. Freund D, Howe D, Simmons F, et al. Quiet Spike Prototype Aerodynamic Characteristics from Flight Test[R]. AIAA-2008-0125 [Google Scholar]
  4. Whitham G. The Flow Pattern of a Supersonic Projectile[J]. Communications on Pure and Applied Mathematics, 1952, 5(3): 289-301 [Article] [CrossRef] [Google Scholar]
  5. Rallabhandi S K. Advanced Sonic Boom Prediction Using the Augmented Burgers Equation[J]. Journal of Aircraft, 2011, 48(4): 354-360 [Article] [CrossRef] [Google Scholar]
  6. Park M A, Morgenstern J M. Summary and Statistical Analysis of the First AIAA Sonic Boom Prediction Workshop[J]. Journal of Aircraft, 2015, 98(1): 569-578 [Article] [Google Scholar]
  7. Farhatt C, Argrow B, Nikbay M, et al. Shape Optimization with F-Function Balancing for Reducing the Sonic Boom Initial Shock Pressure Rise[J]. International Journal of Aeroacoustics, 2004, 3(3): 348-361 [Article] [Google Scholar]
  8. Li C, Ye Z, Wang G. Simulation of Flow Separation at the Wing-Body Junction with Different Fairings[J]. Journal of Aircraft, 2015, 45(1): 340-358 [Article] [Google Scholar]
  9. Ma B, Wang G, Ren J, et al. Near Field Sonic Boom Analysis with HUNS3D Solver[R]. AIAA-2017-0038 [Google Scholar]
  10. Mian H H, Wang G, Raza M A. Application and Validation of HUNS3D Flow Solver for Aerodynamic Drag Prediction Cases[C]//International Bhurban Conference on Applied Sciences and Technology, 2013: 18-20 [Google Scholar]
  11. Roe P L. Approximate Riemann Soslvers, Parameter Vectors, and Difference Schemes[J]. Journal of Computational Physics, 1981, 43(2): 350-357 [Article] [NASA ADS] [Google Scholar]
  12. Liou Mengsing. Ten Years in the Making-AUSM-Family[R]. AIAA-2001-2521 [Google Scholar]
  13. Ismail Farzad, Philip L. Affordable, Entropy-Consistent Euler Flux Functions Ⅱ:Entropy Production at Shocks[J]. Journal of Computational Physics, 2009, 228(15): 365-410 [Article] [Google Scholar]
  14. Zha G C, Shen Y, Wang B. An Improved Low Diffusion E-CUSP Upwind Scheme[J]. Computers & Fluids, 2011, 48(1): 20-21 [Article] [Google Scholar]
  15. Jameson A, Schmidt W, Turkel E. Numerical Solution of the Euler Equations by Finite Volume Methods Using Runge Kutta Time Stepping Schemes[R]. AIAA-1981-1259 [Google Scholar]
  16. Venkatakrishnan V. Convergence to Steady State Solutions of the Euler Equations on Unstructured Grids with Limiters[J]. Journal of Computational Physics, 1995, 118(118): 111-120 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  17. Spalart P, Allmaras S. A One-Equation Turbulence Model for Aerodynamic Flows[J]. La Recherche Aérospatiale, 1992, 439(1): 5-21 [Article] [Google Scholar]
  18. Plotkin K J. Review of Sonic Boom theory[R]. AIAA-1989-1105 [Google Scholar]
  19. Cleveland R O. Propagation of Sonic Booms through a Real, Stratified Atmosphere[D]. Austin, The University of Texas at Austin, 1995 [Google Scholar]
  20. Howe D. Improved Sonic Boom Minimization with Extendable Nose Spike[R]. AIAA-2005-1014 [Google Scholar]
  21. Wolz R. A Summary of Recent Supersonic Vehicle Studies at Gulfstream Aerospace[R]. AIAA-2003-0558 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.