Open Access
Issue
JNWPU
Volume 37, Number 5, October 2019
Page(s) 918 - 927
DOI https://doi.org/10.1051/jnwpu/20193750918
Published online 14 January 2020
  1. Kim S D. Aerodynamic Design of a Supersonic Inlet with a Parametric Bump[J]. Journal of Aircraft, 2009, 46(1): 198–203 [Article] [CrossRef] [Google Scholar]
  2. Lim S, Koh D H, Kim S D, et al. A Computational Study on the Efficiency of Boundary Layer Bleeding for the Supersonic Bump Type Inlet[C]//47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2009: 5–8 [Google Scholar]
  3. Gaiddon AKnight D D. Multicriteria Design Optimization of Integrated Three-Dimensional Supersonic Inlets[J]. Journal of Propulsion and Power, 2003, 19(3): 456–463 [Article] [CrossRef] [Google Scholar]
  4. Zhang Z K, Lum K Y. S-Shaped Inlet Design Optimization Using the Adjoint Equation Method[R]. AIAA-2006-4453 [Google Scholar]
  5. Lee C HAhn J KBae H G, et al. Efficient Global Optimization Incorporating Feasibility Criterion for the Design of a Supersonic Inlet[J]. Journal of Aerospace Engineering, 2012, 226(11): 1362–1372 [Article] [Google Scholar]
  6. Kim HLiou M S. Shape Design Optimization of Embedded Engine Inlets for N2B Hybrid Wing-Body Configuration[J]. Aerospace Science and Technology, 2013, 30128–149 [Article] [CrossRef] [Google Scholar]
  7. Gan WZhang X. Design Optimization of a Three-Dimensional Diffusing S-Duct Using a Modified SST Turbulent Model[J]. Aerospace Science and Technology, 2017, 63(4): 63–78 [Article] [CrossRef] [Google Scholar]
  8. Zhang PengfeiGong ShuxiXu Xueyun, et al Computation and Control of RCS for Large Open-Ended Cavities[J]. Journal of Xidian University, 2009, 36(1): 111–115 [Article] (in Chinese) [Google Scholar]
  9. Guo WenyanZhu Yanzhen. HF Electromagnetic Scattering Properties and RCS Calculation of the Airplane's Inlet[J]. Journal of Harbin Institute of Technology, 1999(1): 123–126 [Article] (in Chinese) [Google Scholar]
  10. Coello C A C, Lechuga M S. MOPSO: A Proposal for Multiple Objective Particle Swarm Optimization[C]//Proceedings of the IEEE Congress on Evolutionary Computation, 2002: 1051–1056 [Google Scholar]
  11. Raquel C R, Naval P C. An Effective Use of Crowding Distance in Multi-Objective Particle Swarm Optimization[C]//Proceedings of the Workshops on Genetic and Evolutionary Computation, 2005: 257–264 [Google Scholar]
  12. Deb KPratap AAgarwal Set alA Fast and Elitist Multi-Objective Genetic Algorithm:NSGA-Ⅱ[J]. IEEE Trans on Evolutionary Computation, 2002, 6(2): 182–197 [Article] [CrossRef] [Google Scholar]
  13. Weron A, Weron R. Computer Simulation of Levy-α Stable Variables and Processes[M]. Springer Berlin Heidelberg, 1995: 379–392 [Google Scholar]
  14. Kogon S MManolakis D G. Signal Modeling with Self-Similarα Stable Processes:the Fractional Levy Stable Motion Model[J]. IEEE Trans on Signal Processing, 1996, 44(4): 1006–1010 [NASA ADS] [CrossRef] [Google Scholar]
  15. Fan HuayuZhan HaoCheng Shixinet alResearch and Application of Multi-Objective Particle Swarm Optimization Algorithm Based on α-Stable Distribution[J]. Journal of Northwestern Polytechnical University, 2019, 37(2): 232–241 [Article] (in Chinese) [CrossRef] [Google Scholar]
  16. Emmerich MGiannakoglou KNaujoks B. Single-and Multi-Objective Evolutionary Optimization Assisted by Gaussian Random Field Metamodels[J]. IEEE Trans on Evolutionary Computation, 2006, 10(4): 421–439 [Article] [CrossRef] [Google Scholar]
  17. Emmerich M, Deutz A H, Klinkenberg J W. Hypervolume-Based Expected Improvement: Monotonicity Properties and Exact Computation[C]//IEEE Congress on Evolutionary Computation, 2011: 2147–2154 [Google Scholar]
  18. Zitzler EEvolutionary Algorithms for Multiobjective Optimization[M]. Switzerland, Zurich, Swiss Federal Institute of Technology, 1998 [Google Scholar]
  19. Jones D RSchonlau MWelch W J. Efficient Global Optimization of Expensive Black-Box Functions[J]. Journal of Global Optimization, 1998, 13455–492 [Article] [CrossRef] [Google Scholar]
  20. Cheng ShixinZhan HaoShu Zhaoxinet alEffective Optimization on Bump Inlet Using Meta-Model Multi-Objective Particle Swarm Assisted by Expected Hyper-Volume Improvement[J]. Aerospace Science and Technology, 2019, 87431–447 [Article] [CrossRef] [Google Scholar]
  21. Cheng S XZhan HShu Z X. An Innovative Hybrid Multi-Objective Particle Swarm Optimization with or without Constraints Handling[J]. Applied Soft Computing, 2016, 47370–388 [Article] [CrossRef] [Google Scholar]
  22. Menter F R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications[J]. AIAA Journal, 1994, 32(8): 1598–1605 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  23. Wang Xu, Song Bifeng, Guo Xiaohui. Research on the Approach for Calculating the Probability of Detecting an Aircraft by Radar System[J]. Systems Engineering-Theory & Practice (in Chinese) [Google Scholar]
  24. Zhang Kao Ma Dongli Military Aircraft Survivability and Stealt Design Beijing National Defense Industry Press 2002 (in Chinese) [Google Scholar]
  25. Morris M DMitchell T J. Exploratory Designs for Computer Experiments[J]. Journal of Statistical Planning and Inference, 1995, 43(3): 381–402 [Article] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.