Open Access
Volume 38, Number 4, August 2020
Page(s) 685 - 694
Published online 06 October 2020
  1. Pagano A, Frederico L, Barbarino M, et al. Multi-Objective Aeroacoustic Optimization of an Aircraft Propeller[C]//12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2008 [Google Scholar]
  2. Marinus B G, Roger M, Van Den Braembussche R A, et al. Multidisciplinary Optimization of Propeller Blades: Focus on the Aeroacoustic Results[C]//17th AIAA/CEAS Aeroacoustics Conference, 2011 [Google Scholar]
  3. Canard-Caruana S, Le Tallec C, Beaumier P, et al. ANIBAL: a New Aero-Acoustic Optimized Propeller for Light Aircraft Applications[C]//19th AIAA Aviation Technology, Integration and Operations Conference and Aircraft Noise and Emisions Reduction Symposium, 2010 [Google Scholar]
  4. Wang Bo, Zhao Qijun, Xu Guohua. Numerical Optimization of Helicopter Rotor Twist Distribution in Hover[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(7): 1163-1172 [Article] (in Chinese) [Google Scholar]
  5. Zhao Qijun, Jiang Shuang, Li Peng, et al. Aerodynamic Optimization Analyses of Tiltrotor/Propeller Based on CFD Method[J]. Acta Aerodynamic Sinica, 2017, 35(4): 544-553 [Article] (in Chinese) [Google Scholar]
  6. Guo Wangliu, Song Wenpeng, Xu Jianhua, et al. An Effective Aerodynamic/Acoustic Optimization of Blade Tip Planform for Helicopter Rotors[J]. Journal of Northwestern Polytechnical University, 2012, 30(1): 73-79 [Article] (in Chinese) [Google Scholar]
  7. Zhu Zheng, Zhao Qijun. Optimization Design Method for Rotor Blade-Tip Shape with Low HIS Noise Character[J]. Acta Aeronautica et Astronautica Sinica, 2015 36(5): 1442-1452 [Article] (in Chinese) [Google Scholar]
  8. Gutin L. On the Sound Field of a Rotating Propeller[R]. NACATM-1195, 1948 [Google Scholar]
  9. Deming A F. Noise from Propellers with Symmetrical Sections at Zero Blade Angle[R]. NACA TN-679, 1937 [Google Scholar]
  10. Garrick L E, Watkins. A Theoretical Study of the Effect of Forward Speed on the Free-Space Sound-Pressure Field around Propellers[R]. NACA Report 1198, 1953 [Google Scholar]
  11. Arnoldi R A. Propeller Noise Caused by Blade Thickness[R]. United Aircraft Corporation Research Department Report R-0896-1, 1956 [Google Scholar]
  12. Arnoldi R A. Near Field Computations of Propeller Blade Thickness Noise[R]. United Aircraft Corporation Research Department Report R-0896-2, 1956 [Google Scholar]
  13. Barry F W, Magliozzi B. Noise Detectability Prediction Method for Low Tip Speed Propellers[R]. Hamilton Standard Division TR-71-37, 1971 [Google Scholar]
  14. Hanson D B. Helicoidal Surface Theory for Harmonic Noise of Propellers in the Far Field[J]. AIAA Journal, 1980, 18(10): 1213-1220 10.2514/3.50873 [CrossRef] [Google Scholar]
  15. Hanson D B. Sound from a Propeller at Angle of Attack:a New Theoretical Viewpoint[J]. Proceedings of the Royal Society of London. Series A:Mathematical and Physical Sciences, 1995, 449(1936):315-328 [Article] [Google Scholar]
  16. Kotwicz H M T, Feszty D, Meslioui S A, et al. Applicability of Early Acoustic Theory for Modern Propeller Design[C]//23rd AIAA/CEAS Aeroacoustics Conference, 2017 [Google Scholar]
  17. Kotwicz H M T, Feszty D, Meslioui S A, et al. Evaluation of Acoustic Frequency Methods for the Prediction of Propeller Noise[J]. AIAA Journal, 2019, 57(6): 2465-2478 10.2514/1.J056658 [CrossRef] [Google Scholar]
  18. Sederberg T W, Parry S R. Free-Form Deformation of Solid Geometric Models[C]//Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques, 1986: 151-160 [Google Scholar]
  19. Lamousin H J, Waggenspack Jr W N. NURBS-Based Free-Form Deformations[J]. IEEE Computer Graphics and Applications, 1994(6): 59-65 [Article] [CrossRef] [Google Scholar]
  20. Boer A D, Von Der Schoot M S, Bijl H. Mesh Deformation Based on Radial Basis Function Interpolation[J]. Computers & Structures, 2007, 85(11): 784-795 [Article] [CrossRef] [Google Scholar]
  21. Xu Jiakuan, Bai Junqiang, Huang Jiangtao, et al. Study of Aerodynamic Optimization Design of Wing under the Interaction of Propeller Slipstream[J]. Acta Aeronauticaet Astronautica Sinica, 2014, 35(11): 2910-2920 [Article] (in Chinese) [Google Scholar]
  22. Hanson D B, Parzych D J. Theory for Noise of Propellers in Angular Inflow with Parametric Studies and Experimental Verification[R]. NASA CR-1993-4499, 1993 [Google Scholar]
  23. Hambrey J. Computational Aeroacoustic Prediction of Propeller Noise Using Grid-Based and Grid-Free CFD Methods[D]. Ottawa, Carleton University, 2016 [Google Scholar]
  24. Srinivas N, Deb K. Multi-Objective Function Optimization Using Non-Dominated Sorting Genetic Algorithms[J]. IEEE Trans on Evolutionary Computation, 1995, 2(3): 221-248 [Article] [CrossRef] [Google Scholar]
  25. Deb K, Pratap A, Agarwal S, et al. A Fast and Elitist Multiobjective Genetic Algorithm:NSGA-Ⅱ[J]. IEEE Trans on Evolutionary Computation, 2002, 6(2): 182-197 10.1109/4235.996017 [Google Scholar]
  26. Hanson D B. Influence of Propeller Design Parameters on Far-Field Harmonic Noise in Forward Flight[J]. AIAA Journal, 1980, 18(11): 1313-1319 10.2514/3.50887 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.