Open Access
Issue
JNWPU
Volume 38, Number 5, October 2020
Page(s) 1129 - 1137
DOI https://doi.org/10.1051/jnwpu/20203851129
Published online 08 December 2020
  1. Huo Dajun. Operation of Network Swarm[M]. Beijing: National Defense University Press, 2013 [Google Scholar]
  2. Liang Yixin, Cheng Guang, Guo Xiaojun. Research Progress on Architecture and Protocol Stack of the Airborne Network[J]. Journal of Software, 2016, 27 (1): 96– 111 [Article] (in Chinese) [Google Scholar]
  3. Nguyen T T T, Armitage G. A Survey of Techniques for Internet Traffic Classification Using Machine Learning[J]. IEEE Communications Surveys & Tutorials, 2009, 10 (4): 56– 76 [Article] [CrossRef] [Google Scholar]
  4. Moore A W, Zuev D. Internet Traffic Classification Using Bayesian Analysis Techniques[J]. ACM Sigmetrics Performance Evaluation Review, 2005, 33 1: 50 [Article] [CrossRef] [Google Scholar]
  5. Wu K, Ke J. A Scheme of Real-Time Traffic Classification in Secure Access of Power Enterprise Based on Improved Naïve Bayesian Classification Algorithm[C]//IEEE International Conference on Software Engineering & Service Science, 2017 [Google Scholar]
  6. Xu Peng, Lin Sen. Internet Traffic Classification Using C4.5 Decision Tree[J]. Journal of Software, 2009, 20 (10): 2692– 2704 [Article] (in Chinese) [CrossRef] [Google Scholar]
  7. Tong Da, Qu Y R, Prasanna V K. Accelerating Decision Tree Based Traffic Classification on FPGA and Multicore Platforms[J]. IEEE Trans on Parallel & Distributed Systems, 2017, 28 (11): 3046– 3059 [Article] [CrossRef] [Google Scholar]
  8. Cao Jie, Fang Zhiyi, Qu Guannan, et al. An Accurate Traffic Classification Model Based on Support Vector Machines[J]. Networks, 2017, 27 (1): e1962 [Article] [Google Scholar]
  9. Sun Guanglu, Chen Teng, Su Yangyang, et al. Internet Traffic Classification Based on Incremental Support Vector Machines[J]. Mobile Networks & Applications, 2018, 23 (14): 1– 8 [Article] [CrossRef] [Google Scholar]
  10. Wang Wei, Zhu Ming, Zeng Xuewen. Malware Traffic Classification Using Convolutional Neural Network for Representation Learning[C]//2017 International Conference on Information Networking(ICOIN), 2017: 712–717 [Google Scholar]
  11. Wang Wei, Zhu Ming, Wang Jinlin, et al. End-to-End Encrypted Traffic Classification with One Dimensional Convolution Neural Networks[C]//2017 IEEE International Conference on Intelligence and Security Informatics(ISI), 2017 [Google Scholar]
  12. Wang Yong, Zhou Huiyi, Feng Hao, et al. Network Traffic Classification Method Basing on CNN[J]. Journal on Communications, 2018, 39 (1): 14– 23 [Article]

    WANG Yong, ZHOU Huiyi, FENG Hao, et al. Network Traffic Classification Method Basing on CNN[J]. Journal on Communications, 2018, 39(1):14-23

    (in Chinese) [Google Scholar]
  13. Pan Sinno Jialin, Yang Qiang. A Survey on Transfer Learning[J]. IEEE Trans on Knowledge & Data Engineering, 2010, 22 (10): 1345– 1359 [Article] [CrossRef] [Google Scholar]
  14. Shin H C, Roth H R, Gao M, et al. Deep Convolutional Neural Networks for Computer Aided Detection:CNN Architectures, Dataset Characteristics and Transfer Learning[J]. IEEE Trans on Medical Imaging, 2016, 1 (1): 1285– 1298 [Article] [CrossRef] [Google Scholar]
  15. Zhou Feiyan, Jin Linpeng, Dong Jun. Review of Convolutional Neural Network[J]. Chinese Journal of Computers, 2017, 40 (6): 1– 23 [Article] (in Chinese) [Google Scholar]
  16. Li Qin, Shi Wei, Sun Jieping, et al. The Research of Network Traffic Identification Based on Convolutional Neural Network[J]. Journal of Sichuan University, 2017, 54 (5): 959– 964 [Article] (in Chinese) [Google Scholar]
  17. Sharif razavian A, Azizpour H, Sullivan J, et al. CNN Feature Off-the-Shelf: an Astounding Baseline for Recognition[C]//Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, UH, USA, 2014: 806–813 [Google Scholar]
  18. Jason Yosinski, Jeff Clune, Yoshua Bengio, et al. How Transferable Are Features in Deep Neural Networks?[C]//Advances in Neural Information Processing System 27, Montreal, Canada, 2014: 3320–3328 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.