Open Access
Issue
JNWPU
Volume 38, Number 6, December 2020
Page(s) 1154 - 1162
DOI https://doi.org/10.1051/jnwpu/20203861154
Published online 02 February 2021
  1. Qiu Xiaokang. Development and Application of Deep Learning[J]. Science and Technology, 2016, 26(33): 93-95 (in Chinese) [Google Scholar]
  2. Long J, Shelhamer E, Darrell T. Fully Convolutional Networks for Semantic Segmentation[J]. IEEE Trans on Pattern Analysis & Machine Intelligence, 2014, 39(4): 640-651 [Google Scholar]
  3. Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation[C]//Medical Image Compating and Compater Assited Intervention, 2015 [Google Scholar]
  4. Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions[C]//International Conference on Learning Representations, 2016 [Google Scholar]
  5. Sutton C. An Introduction to Conditional Random Fields[J]. Foundations and Trends in Machine Learning, 2012, 4(4): 267-373 [CrossRef] [Google Scholar]
  6. Li Ping, Fang Xibo, Huang Zhili. Aim Point Selecting Algorithm for Endgame Based on Infrared Imaging Guidance[J]. Infrared and Laser Engineering, 2013, 42(5): 1131-1136 (in Chinese) [Google Scholar]
  7. Li Cheng, Li Jianxun, Tong Zhongxiang. Research on Partial Image Recognition and Tracking in Infrared Imaging Terminal Guidance[J]. Acta Armamentarii, 2015, 36(7): 1213-1221 (in Chinese) [Google Scholar]
  8. Hu Leili, Zhang Junchang, Zhang Liangzhong. Real-Time Infrared Target Detection Method Based on Human Vision System[J]. Journal of Northwestern Polytechnical University, 2017, 35(5): 910-914 (in Chinese) [Google Scholar]
  9. Yu Ruixing, Wu Yulin, Cao Meng, et al. Target Extraction and Image Matching Algorithm Based on Combination of Edge and Corner[J]. Journal of Northwestern Polytechnical University, 2017, 35(4): 586-590 (in Chinese) [Google Scholar]
  10. Ren S, He K, Girshick R, et al. Faster R-CNN:Towards Real-Time Object Detection with Region Proposal Networks[J]. IEEE Trans Pattern Anal Mach Intell, 2017, 39(6): 1137-1149 [Google Scholar]
  11. Lin T Y, Dollar P, Girshick R, et al. Feature Pyramid Networks for Object Detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125 [Google Scholar]
  12. Lin G, Milan A, Shen C. RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017 [Google Scholar]
  13. He K, Gkioxari G, Dollar P, et al. Mask R-CNN[C]//Proceddings of the IEEE Internaltional Conference on Computer Vision, 2017: 2961-2969 [Google Scholar]
  14. He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.