Open Access
Issue
JNWPU
Volume 39, Number 2, April 2021
Page(s) 285 - 291
DOI https://doi.org/10.1051/jnwpu/20213920285
Published online 09 June 2021
  1. Karras C, Marantos P, Bechlioulis C, et al. Unsupervised online system identification for underwater robotic vehicles[J]. IEEE Journal of Oceanic Engineering, 2018, 44(3): 1–22 [Article] [Google Scholar]
  2. Kumar N, Mitra U, Narayanan S. Robust object classification in underwater sidescan sonar images by using reliability-aware fusion of shadow features[J]. Oceanic Engineering, 2015, 40(3): 592–606 [Article] [Google Scholar]
  3. Myers V, Fawcett J. A template matching procedure for automatic target recognition in synthetic aperture sonar imagery[J]. IEEE Signal Processing Letters, 2010, 17(7): 683–686 [Article] [Google Scholar]
  4. Kamal S, Mohammed K, Pillai S, et al. Deep learning architectures for underwater target recognition[C]//2013 Ocean Electronics(SYMPOL), 2013 [Google Scholar]
  5. Ferguson L, Ramakrishnan R, Williams B, et al. Convolutional neural networks for passive monitoring of a shallow water environment using a single sensor[C]//2017 IEEE International Conference on Acoustics, Speech and Signal Processing, 2017 [Google Scholar]
  6. Williams D. Underwater target classification in synthetic aperture sonar imagery using deep convolutional neural networks[C]//International Conference on Pattern Recognition, 2017: 2497–2502 [Google Scholar]
  7. Song Da. Research on deep learning-based underwater target recognition method[D], Chengdu: University of Electronic Science and Technology of China, 2018 (in Chinese) [Google Scholar]
  8. Li Chen, Huang Zhaoqiong, Xu Ji, et al. Multi-channel underwater target recognition using deep learning[J]. Acta Acustica, 2020, 45(4): 506–514 [Article] (in Chinese) [Google Scholar]
  9. Zeiler M, Fergus R. Visualizing and understanding convolutional networks[C]//European Conference on Computer Rision Springes, Cham, 2014 [Google Scholar]
  10. Zeiler M, Taylor G, Fergus R. Adaptive deconvolutional networks for mid and high level feature learning[C]//2011 International Conference on Computer Vision, 2011: 2018–2025 [Google Scholar]
  11. Wang Jingyu. The Research of machine awareness and bio-inspired perception based on audio-visual information[D]. Xi'an: Northwestern Polytechnical University, 2016 (in Chinese) [Google Scholar]
  12. Yang C, Zhang L, Lu H, et al. Saliency detection via graph-based manifold ranking[C]//2013 IEEE Conference on Computer Vision and Pattern Recognition, 2013 [Google Scholar]
  13. He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Trans on Pattern Analysis & Machine Intelligence, 2014, 37(9): 346–361 [Article] [Google Scholar]
  14. He K, Zhang X, Ren S, et al. Delving deep into rectifiers: surpassing human-level performance on imagenet classification[C]//2015 International Conference on Computer Vision, 2015 [Google Scholar]
  15. Kingma D, Ba J. Adam: a method for stochastic optimization[C]//Proceedings of International Conference on Learning Representations, 2015 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.