Open Access
Volume 40, Number 5, October 2022
Page(s) 1039 - 1045
Published online 28 November 2022
  1. PORTUGAL S J, HUBEL T Y, FRITZ J, et al. Upwash exploitation and downwash avoidance by flap phasing in ibis formation flight[J]. Nature, 2014, 505(7483): 399[Article] [CrossRef] [Google Scholar]
  2. LISSAMAN P B, SHOLLENBERGER C A. Formation flight of birds[J]. Science, 1970, 168(3934): 1003–1005 [Article] [CrossRef] [Google Scholar]
  3. CUTTS C J, SPEAKMAN J R. Energy savings in formation flight of pink-footed geese[J]. Journal of Experimental Biology, 1994, 189(1): 251–261 [Article] [CrossRef] [Google Scholar]
  4. WEIMERSKIRCH H, MARTIN J, CLERQUIN Y, et al. Energy saving in flight formation[J]. Nature, 2001, 413(6857): 697–698 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  5. VACHON M J, RAY R J, WALSH K R, et al. F/A-18 performance benefits measured during the autonomous formation flight Project[C]//AIAA Atmospheric Flight Mechanics Conference, Monferey, California, 2002 [Google Scholar]
  6. BLAKE W B, GINGRAS D R. Comparison of predicted and measured formation flight interference effects[J]. Journal of Aircraft, 2004, 41(2): 201–207 [Article] [CrossRef] [Google Scholar]
  7. SABAN D, WHIDBORNE J F, COOKE A K. Simulation of wake vortex effects for UAVs in close formation flight[J]. Aeronautical Journal-New Series, 2009, 113(1149): 727–738 [Article] [CrossRef] [Google Scholar]
  8. CHO H, LEE S, HAN C. Experimental study on the aerodynamic characteristics of a fighter-type aircraft model in close formation flight[J]. Journal of Mechanical Science and Technology, 2014, 28(8): 3059–3065 [Article] [CrossRef] [Google Scholar]
  9. VICROY D, VIJGEN P, REIMER H, et al. Recent NASA wake-vortex flight tests, flow-physics database and wake-develop-ment analysis[C]//World Aviation Conference, 1998 [Google Scholar]
  10. RAY R, COBLEIGH B, VACHON M, et al. Flight test techniques used to evaluate performance benefits during formation flight[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit, 2002 [Google Scholar]
  11. AHMAD N N, PROCTOR F. Review of idealized aircraft wake vortex models[C]//52nd Aerospace Sciences Meeting, 2014 [Google Scholar]
  12. HANSEN J L, COBLEIGH B R. Induced moment effects of formation flight using two F/A-18 Aircraft[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit, Monterey, CA, 2002 [Google Scholar]
  13. ZHANG Q, LIU T. Aerodynamics modeling and analysis of close formation flight[J]. Journal of Aircraft, 2017, 54(6): 2192–2204 [Article] [CrossRef] [Google Scholar]
  14. SHAN J, LIU H T. Close-formation flight control with motion synchronization[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(6): 1316–1320 [Article] [CrossRef] [Google Scholar]
  15. PROUD A, PACHTER M, D'AZZO J. Close formation flight control[C]//Guidance, Navigation, and Control Conference and Exhibit, 1999 [Google Scholar]
  16. ALMEIDA F. Tight formation flight with feasible model predictive control[C]//AIAA Guidance, Navigation, and Control Conference, 2015 [Google Scholar]
  17. PACHTER M, D'AZZO J J, PROUD W A. Tight formation flight control[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(2): 246–254 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  18. ZHANG Q, LIU H H. Robust design of close formation flight control via uncertainty and disturbance estimator[C]//AIAA Guidance, Navigation, and Control Conference, 2016 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.