Open Access
Volume 41, Number 3, June 2023
Page(s) 447 - 454
Published online 01 August 2023
  1. SONG Dong. Anti-vibration reinforcement of final assembly for aerospace product[J]. Electronics Process Technology, 2013, 34(1): 29–33 [Article] (in Chinese) [Google Scholar]
  2. WISNOM M R, GIGLIOTTI M, ERSOY N, et al. Mechanisms generating residual stresses and distortion during manufacture of polymer-matrix composite structures[J]. Composites Part A: Applied Science and Manufacturing, 2006, 37(4): 522–529 [Article] [CrossRef] [Google Scholar]
  3. ASTM International. Standard test method for determining residual stresses by the hole-drilling strain-gage method[S]. ASTM E837-13a, 2013 [Google Scholar]
  4. IBRAHIM MAMANE A S, GILJEAN S, PAC M J, et al.Optimization of the measurement of residual stresses by the incremental hole drilling method. Part Ⅰ: numerical correction of experimental errors by a configurable numerical-experimental coupling[J]. Composite Structures, 2022, 294: 115703 [Article] [CrossRef] [Google Scholar]
  5. LEOS A, VASYLEVSKYI K, TSUKROV I, et al.Evaluation of process-induced residual stresses in orthogonal 3D woven composites via nonlinear finite element modeling validated by hole drilling experiments[J]. Composite Structures, 2022, 297: 115987 [Article] [CrossRef] [Google Scholar]
  6. HILLERBORG A, MODEER M, PETERSSON P, et al.Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research, 1976, 6(6): 773–782 [Article] [CrossRef] [Google Scholar]
  7. CAMANHO P P, HALLETT S R. Numerical modelling of failure in advanced composite materials[M]. Cambridge: Cambridge Woodhead Publishing Ltd., 2015 [Google Scholar]
  8. MOHAMMAD H R, MOUSA S. Finite element modeling strategies for 2D and 3D delamination propagation in composite DCB specimens using VCCT, CZM and XFEM approaches[J]. Theoretical and Applied Fracture Mechanics, 2019, 103: 102246[Article] [CrossRef] [Google Scholar]
  9. ELICES M, GUINEA G V, GÓMEZ J, et al.The cohesive zone model: advantages, limitations and challenges[J]. Engineering Fracture Mechanics, 2002, 69(2): 137–163 [Article] [CrossRef] [Google Scholar]
  10. REN Huaihui, WANG Xishu, JIA Su. Fracture analysis on die attach adhesives for stacked packages based on in-situ testing and cohesive zone model[J]. Microelectronics Reliability, 2013, 53(7): 1021–1028 [Article] [CrossRef] [Google Scholar]
  11. GB/T 2567-2021, 2021 Standardization Administration of China. Test methods for properties of resin casting body[S]. GB/T2567-2021, 2021 (in Chinese) [Google Scholar]
  12. MI Y, CRISFIELD M A, DAVIES G A O, et al.Progressive delamination using interface elements[J]. Journal of Composite Materials, 1998, 32(14): 1246–1272 [Article] [CrossRef] [Google Scholar]
  13. JI Ruixue, ZHAO Libin, WANG Kangkang, et al.Effects of debonding defects on the postbuckling and failure behaviors of composite stiffened panel under uniaxial compression[J]. Composite Structures, 2021, 256: 113121 [Article] [CrossRef] [Google Scholar]
  14. BENZEGGAGH M L, KENANE M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus[J]. Composites Science and Technology, 1996, 56(4): 439–449 [Article] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.