Open Access
Volume 41, Number 5, Octobre 2023
Page(s) 895 - 904
Published online 11 December 2023
  1. Federal Aviation Administration. 14 CFR part 25, airworthiness standards for transport category airplanes, appendix C, part Ⅰ: atmospheric icing conditions[S]. CFR 14-25-2014 [Google Scholar]
  2. BROEREN A P, ADDY H E, BRAGG M B, et al. Aerodynamic simulation of ice accretion on airfoils[R]. NASA/TP-2011-216929, 2011 [Google Scholar]
  3. 中国民用航空局 中国民用航空规章第25部: 运输类飞机适航标准 CCAR-25-R4 [Google Scholar]
  4. THOMPSON D, MOGILI P. Detached-eddy simulations of separated flow around wings with ice accretions: year one report[R]. NASA/CR-2004-213379 [Google Scholar]
  5. MOGILI P, THOMPSON D, CHOO Y S, et al. RANS and DES computation for a wing with ice accretion[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit, 2005, Reno, Nevada [Google Scholar]
  6. WEI Yang, XU Haojun, XUE Yuan, et al. Influence of ice accretion on leading edge of wings on stability and control-ability of large aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6): 1088–1095 [Article] (in Chinese) [Google Scholar]
  7. COSTES M, MOENS F. Advanced numerical prediction of iced airfoil aerodynamics[J]. Aerospace Science and Technology, 2019, 91: 186–207 [Article] [CrossRef] [Google Scholar]
  8. ALAM M F, THOMPSON D S, WALTERS D K. Hybrid Reynolds-averaged Navier-Stokes/large-eddy simulation models for flow around an iced wing[J]. Journal of Aircraft, 2015, 52: 244–256 [Article] [CrossRef] [Google Scholar]
  9. XIAO M C, ZHANG Y F, ZHOU F. Numerical investigation of the unsteady flow past an iced multi-element airfoil[J]. AIAA Journal, 2020, 58: 3848–3862 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  10. XIAO M C, ZHANG Y F. Improved prediction of flow around airfoil accreted with horn or ridge ice[J]. AIAA Journal, 2021, 59: 2318–2327 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  11. STEBBINS S J, LOTH E, BROEREN A P, et al. Review of computational methods for aerodynamic analysis of iced lifting surfaces[J]. Progress in Aerospace Sciences, 2019, 111: 1–28 [Google Scholar]
  12. CHEN Yingchun, ZHANG Meihong, ZHANG Miao, et al. Review of large civil aircraft aerodynamic design[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522759 [Article] (in Chinese) [Google Scholar]
  13. SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study: a path to revolutionary computational aerosciences[R]. NASA/CR-2014-218178, 2014 [Google Scholar]
  14. SPLART P R, ALLMARAS S R. A one-equation turbulence model for aerodynamic flows[C]//30th Aerospace Sciences Meeting and Exhibit, 1992 [Google Scholar]
  15. SHUR M L, SPALART P R, KH M, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29: 406–417 [Google Scholar]
  16. YAN Chao, YU Jian, XU Jinglei. On the achievements and prospects for the methods of computational fluid dynamics[J]. Advances in Mechanics, 2011, 41(5): 562–588 [Article] (in Chinese) [Google Scholar]
  17. LI Li, MA Rong, LIANG Yihua. Performance analysis of a low dissipation AUSM+ scheme for all speed[C]//16th National Workshop of Computational Fluid Dynamics, Xiamen, 2014(in Chinese) [Google Scholar]
  18. GRITSKEVICH M S, GARBARUK A V, SCHUTZE J, et al. Development of DDES and IDDES formulations for the k-ω shear stress transport model, flow[J]. Turbulence and Combustion, 2012, 88: 431–449 [CrossRef] [Google Scholar]
  19. WILCOX D C. Turbulence modeling for CFD[M]. 3rd ed. Arizona: DCW Industries, Incoporated, 2006 [Google Scholar]
  20. ZHAO Zhong, ZHANG Laiping, HE Lei, et al. PHengLEI: a large scale parallel CFD framework for arbitrary grids[J]. Chinese Journal of Computers, 2019, 42(11): 2368–2382 [Article] (in Chinese) [Google Scholar]
  21. KARYPIS G, KUMAR V. Parallel multilevel k-way partitioning scheme for irregular graphs[J]. SIAM Review, 1999, 41(2): 278–300 [NASA ADS] [CrossRef] [Google Scholar]
  22. BROEREN A P, BRAGG M B, ADDY H E. Flowfield measurements about an airfoil with leading-edge ice shapes[J]. Journal of Aircraft, 2006, 43: 1226–1234 [NASA ADS] [CrossRef] [Google Scholar]
  23. SPALART P R. Young-person′s guide to detached-eddy simulation grids[R]. NASA/CR-2001-21103, 2001 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.