Open Access
Volume 41, Number 5, Octobre 2023
Page(s) 996 - 1005
Published online 11 December 2023
  1. ZHANG Mingyue, YANG Hongbo, ZHANG Jiabao, et al. Servo system of harmonic drive electromechanical actuator using improved ADRC[J]. Optics and Precision Engineering, 2014, 22(1): 99–108. [Article] (in Chinese) [CrossRef] [Google Scholar]
  2. WANG Jiaqi. Novel piezoelectric actuator and its application in miniature missiles servo system[D]. Harbin: Harbin Engineering University, 2020 (in Chinese) [Google Scholar]
  3. YU Zhiyuan, YAO Xiaoxian, PAN Dibo, et al. Design for a novel piezoelectric servo[J]. Transactions of Beijing Institute of Technology, 2010, 30(5): 517–520. [Article] (in Chinese) [Google Scholar]
  4. TAN C, LI B, LIU Y, et al. Multiphysics methodology for thermal modelling and quantitative analysis of electromagnetic linear actuator[J]. Smart Materials and Structures, 2019, 28(8): 087001. [Article] [CrossRef] [Google Scholar]
  5. BARBARINO S, BILGEN O, AJAJ R M, et al. A review of morphing aircraft[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(9): 823–877. [Article] [CrossRef] [Google Scholar]
  6. WANG L, CHEN W, LIU J, et al. A review of recent studies on non-resonant piezoelectric actuators[J]. Mechanical Systems and Signal Processing, 2019, 133: 106254. [Article] [CrossRef] [Google Scholar]
  7. ZHONG Xiangqiang, HUANG Weiqing, ZHANG Xuan, et al. Double-foot piezoelectric linear motor with secondary lever and fiexure hinge composite structure[J]. Optics and Precision Engineering, 2018, 26(1): 86–94. [Article] (in Chinese) [CrossRef] [Google Scholar]
  8. HU Kaiming, WEN Lihua, YAN Zhaoqi. Static and dynamic simulation and analysis on PBP actuator with a connecting rod mechanism to magnify output angular displacement[J]. Acta Armamentarii, 2014, 35(8): 1258–1266. [Article] (in Chinese) [Google Scholar]
  9. CAO Xiaotao, LI Dequan, LI Hongwen, et al. Precision drive and position control of non-resonance piezoelectric stcak linear motor[J]. Optics and Precision Engineering, 2017, 25(8): 2139–2148. [Article] (in Chinese) [CrossRef] [Google Scholar]
  10. TIAN X, LIU Y, DENG J, et al. A review on piezoelectric ultrasonic motors for the past decade: classification, operating principle, performance, and future work perspectives[J]. Sensors and Actuators A: Physical, 2020, 306: 111971. [Article] [CrossRef] [Google Scholar]
  11. LIU Y F, LI J, HU X H, et al. Modeling and control of piezoelectric inertiavfriction actuators: review and future research directions[J]. Mechanical Sciences, 2015, 6(2): 95–107. [Article] [CrossRef] [Google Scholar]
  12. TIAN X, QUAN Q, WANG L, et al. An inchworm type piezoelectric actuator working in resonant state[J]. IEEE Access, 2018, 6: 18975–18983. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  13. LOVERICH J J, KOOPMANN G H, LESIEUTRE G A, et al. A new piezoelectric actuator using a feed-screw for quasi-static motion accumulation——part I: experimental development[J]. Journal of Intelligent Material Systems and Structures, 2008, 19(1): 73–81. [Article] [CrossRef] [Google Scholar]
  14. SUN H, SHI Y, WANG Q, et al. Modeling and design optimization of a new piezoelectric inchworm actuator with screw clamping mechanisms[J]. Micromachines, 2022, 13(12): 2038. [Article] [CrossRef] [Google Scholar]
  15. ZHU Pengju, SHI Yunlai, ZHAO Chunsheng. A new type of large-thrust linear piezoelectric actuator[J]. Journal of Vibration, Measurement & Diagnosis, 2015, 35(1): 163–169. [Article] (in Chinese) [Google Scholar]
  16. SHI Yunlai, CHENG Dingji, ZHANG Jun, et al. Large-thrust piezoelectric linear actuator under tension and pressure load[J]. Optics and Precision Engineering, 2019, 27(4): 832–841. [Article] (in Chinese) [CrossRef] [Google Scholar]
  17. WANG J, HUANG H, ZHAO H. Model-based optimization for structure dimension and driving signal of a stick-slip piezoelectric actuator[J]. Mechanical Systems and Signal Processing, 2022, 164: 108191 [CrossRef] [Google Scholar]
  18. HU Junfeng, YANG Zhanhong. A novel inchworm linear micro actuator[J]. Optics and Precision Engineering, 2018, 26(1): 122–131. [Article] (in Chinese) [CrossRef] [Google Scholar]
  19. LI Jianping, GAO Yunye, WEN Jianming, et al. Principle and experimental analysis of a novel piezoelectric inchworm actuator based on rotating magnet clamping[J]. China Mechanical Engineering, 2020, 31(17): 2059–2063. [Article] (in Chinese) [Google Scholar]
  20. ZHAO Bo, SHI Weijia, WANG Bingquan, et al. Driving method of V-shaped biped inchworm motor based on conduction angle regulation[J]. Optics and Precision Engineering, 2020, 28(2): 363–371. [Article] (in Chinese) [Google Scholar]
  21. LI Xuemei, WANG Meng, LIU Yanhao, et al. Contact Modeling and simulation analysis on the non-exposive separation device of a spacecraft[J]. Journal of Vibration and Shock, 2023, 42(6): 298–306. [Article] (in Chinese) [Google Scholar]
  22. LOVERICH J J. Development of a new high specific power piezoelectric actuator[D]. Pennsylvania, US: The Pennsylvania State University, 2004 [Google Scholar]
  23. 《A Practical Handbook for Mechanical Design》 Editorial Board. A practical handbook for mechanical design[M]. 3rd ed. Beijing: China Machine Press, 2012 (in Chinese) [Google Scholar]
  24. 苏州工业园区盖尔威斯智能科技有限公司 KMF系列无框力矩电机 [EB/OL](2021-06-20)[2022-10-11]. [Article] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.