Open Access
Volume 41, Number 6, Decembre 2023
Page(s) 1198 - 1208
Published online 26 February 2024
  1. LIN Xianghong, ZHANG Yuping, LI Zhiqiang, et al. Research progress on geometric morphology generation algorithms for 3D neurons[J]. Computer Engineering, 2015, 41(2): 161–166 (in Chinese) [Google Scholar]
  2. Oshio K, Yamada S, Nakashima M. Neuron classification based on temporal firing patterns by the dynamical analysis with changing time resolution(DCT) method[J]. Biological Cybernetics, 2003, 88(6): 438–449. [Article] [CrossRef] [Google Scholar]
  3. GOUWENS N W, BERG J, FENG D, et al. Systematic generation of biophysically detailed models for diverse cortical neuron types[J]. Nature Communications, 2018, 9(1): 710. [Article] [CrossRef] [Google Scholar]
  4. ARENDT D, MUSSER J M, BAKER C V H, et al. The origin and evolution of cell types[J]. Nature Reviews Genetics, 2016, 17(12): 744–757. [Article] [CrossRef] [Google Scholar]
  5. KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84–90. [Article] [CrossRef] [Google Scholar]
  6. SHI J, ZHU S, WANG D, et al. ARM: a lightweight module to amend facial expression representation[J]. Signal, Image and Video Processing, 2022, 17(4): 1315–1323 [Google Scholar]
  7. HE K, ZHANG X, REN S, et al. Deep Residual Learning for Image Recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 770–778 [Google Scholar]
  8. SHI W, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016: 1874–1883 [Google Scholar]
  9. WANG T, LIAO D. Neuronal morphology classification based on SVM[C]//2011 International Conference on Computer Science and Service System, 2011 [Google Scholar]
  10. ALAVI A, CAVANAGH B, TUXWORTH G, et al. Automated classification of dopaminergic neurons in the rodent brain[C]//2009 International Joint Conference on Neural Networks, 2009: 81–88 [Google Scholar]
  11. VASQUES X, VANEL L, VILLETTE G, et al. Morphological neuron classification using machine learning[J]. Frontiers in Neuroanatomy, 2016, 10(102): 102 [CrossRef] [Google Scholar]
  12. FOGO G M, ANZELL A R, MAHERAS K J, et al. Machine learning-based classification of mitochondrial morphology in primary neurons and brain[J]. Scientific Reports, 2021, 11(1): 5133. [Article] [CrossRef] [Google Scholar]
  13. LIN X, ZHENG J. A Neuronal morphology classification approach based on locally cumulative connected deep neural networks[J]. Applied Sciences, 2019, 9(18): 3876. [Article] [CrossRef] [Google Scholar]
  14. LIN X, ZHENG J, WANG X, et al. A neuronal morphology classification approach based on deep residual neural networks[J]. Neural Information Processing, 2018, 11304: 336–348 [Google Scholar]
  15. LIN Xianghong, ZHENG Jianyang, WANG Xiangwen, et al. Neuronal adaptive projection classification method based on deep learning network[J]. Acta Electronica Sinica, 2020, 48(7): 1321–1329 (in Chinese) [Google Scholar]
  16. ZHANG T, ZENG Y, ZHANG Y, et al. Neuron type classification in rat brain based on integrative convolutional and tree-based recurrent neural networks[J]. Scientific Reports, 2021, 11(1): 7291. [Article] [CrossRef] [Google Scholar]
  17. YAMASHIRO K, LIU J, MATSUMOTO N, et al. Deep learning-based classification of GAD67-positive neurons without the immunosignal[J]. Frontiers in Neuroanatomy, 2021, 15: 643067 [CrossRef] [Google Scholar]
  18. SHI Jiawei, ZHU Songhao, LIANG Zhiwei. Amending facial expression representation via de-albino[C]//2022 41st Chinese Control Conference, 2022 [Google Scholar]
  19. HU W, HUANG Y, ZHANG F, et al. Noise-tolerant paradigm for training face recognition CNNs[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 11879–11888 [Google Scholar]
  20. VAN DER MAATEN L, HOMTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9: 2579–2605. [Article] [Google Scholar]
  21. SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1409–1556 [Google Scholar]
  22. XIE S, GIRSHICK R, DOLLÁR P, et al. Aggregated residual transformations for deep neural networks[C]//30th IEEE Conference on Computer Vision and Pattern Recognition, 2017: 5987–5995 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.