Open Access
Issue
JNWPU
Volume 42, Number 2, April 2024
Page(s) 353 - 361
DOI https://doi.org/10.1051/jnwpu/20244220353
Published online 30 May 2024
  1. KIM Y, CHOI W, PARK D, et al. A 1/2.8-inch 24M pixel CMOS image sensor with 0.9 μm unit pixels separated by full-depth deep-trench isolation[C]//Proceedings of the 2018 IEEE International Solid-State Circuits Conference, 2018 [Google Scholar]
  2. KIM H, PARK J, JOE I, et al. 5.6 A 1/2.65in 44M pixel CMOS image sensor with 0.7 μm pixels fabricated in advanced full-depth deep-trench isolation technology[C]//Proceedings of the 2020 IEEE International Solid-State Circuits Conference, 2020 [Google Scholar]
  3. HSU T H, CHEN Y K, WU J S, et al. 5.9 A 0.8 V multimode vision sensor for motion and saliency detection with ping-pong PWM pixel[C]//Proceedings of the 2020 IEEE International Solid-State Circuits Conference, 2020 [Google Scholar]
  4. SONG K, KIM D, KIM J, et al. A scalable 300-GHz multichip stitched CMOS detector array[J]. IEEE Trans on Microwave Theory and Techniques, 2022, 70(3): 1797–809. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  5. XU J, LI W, NIE K, et al. A Method to reduce the effect on image quality caused by resistance of column bus[J]. IEEE Trans on Very Large Scale Integration Systems, 2019, 27(1): 173–181. [Article] [CrossRef] [Google Scholar]
  6. GAO J, ZHANG D, NIE K, et al. Analysis and optimization design of the column bus parasitic effects on large-array CMOS image sensor[J]. Microelectronics Journal, 2019, 96: 104681 [Google Scholar]
  7. BOGAERTS J, LAFAILLE R, BORREMANS M, et al. 6.3 105×65 mm2 391M pixel CMOS image sensor with>78 dB dynamic range for airborne mapping applications[C]//Proceedings of the 2016 IEEE International Solid-State Circuits Conference, 2016 [Google Scholar]
  8. ZHU J, LIU D, ZHANG W, et al. Systematic experimental study on stitching techniques of CMOS image sensors[J]. IEICE Electronics Express, 2016, 13(15): 20160441. [Article] [CrossRef] [Google Scholar]
  9. GAO Jing, ZHANG Tianye, NIE Kaiming, et al. Design of timing driven circuit for ultra large array CMOS image sensor[J]. Journal of Tianjin University, 2021, 54(1): 75–81. [Article] (in Chinese) [Google Scholar]
  10. SONG Y, LI P, LIU Z, et al. Buffer reduction for congestion control during timing optimization[C]//Proceedings of the 2022 IEEE 2nd International Conference on Power, Electronics and Computer Applications, 2022 [Google Scholar]
  11. GUO Z J, YU N M, WU L S. A synchronous driving approach based on adaptive delay phase-locked loop for stitching CMOS image sensor[J]. IEICE Electronics Express, 2020, 17(3): 20190642. [Article] [CrossRef] [Google Scholar]
  12. TOTSUKA H, TSUBOI T, MUTO T, et al. 6.4 An APS-H-size 250 Mpixel CMOS image sensor using column single-slope ADCs with dual-gain amplifiers[C]//Proceedings of the 2016 IEEE International Solid-State Circuits Conference, 2016 [Google Scholar]
  13. JUN J, SEO H, KWON H, et al. A 0.7 μm-pitch 108M pixel nonacell-based CMOS image sensor with decision-feedback technique[C]//Proceedings of the 2022 IEEE International Symposium on Circuits and Systems, 2022 [Google Scholar]
  14. GUO Z JCHENG X QXU R M et al. A 1G pixel 10FPS CMOS image sensor using pixel array high-speed readout technology[J]. Integration-The VLSI Journal, 2023, 89: 114–122. [Article] [CrossRef] [Google Scholar]
  15. OGATA M, OKABE Y, NISHI T. Simple RC models of distributed RC lines in consideration with the delay time[C]//Proceedings of the 2004 IEEE International Symposium on Circuits and Systems, 2004 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.