Open Access
Issue
JNWPU
Volume 42, Number 4, August 2024
Page(s) 735 - 743
DOI https://doi.org/10.1051/jnwpu/20244240735
Published online 08 October 2024
  1. WANG Feng, CHENG Yongmei, LI Song, et al. Remote sensing image fusion algorithm based on multi-feature[J]. Journal of Northwestern Polytechnical University, 2015, 33(3): 489–494. [Article] (in Chinese) [Google Scholar]
  2. WANG Feng, CHENG Yongmei. Image fusion method based on JBF and multi-order local region energy[J]. Journal of Northwestern Polytechnical University, 2022, 40(6): 1414–1421. [Article] (in Chinese) [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  3. WANG Feng, CHENG Yongmei, LI Hui. Image fusion algorithm of focal region detection and TAM-SCM based on SHT domain[J]. Journal of Northwestern polytechnical university, 2019, 37(1): 114–121. [Article] (in Chinese) [CrossRef] [EDP Sciences] [Google Scholar]
  4. SUN Changqi, ZHANG Cong, XIONG Naixue. Infrared and visible image fusion techniques based on deep learning: a review[J]. Electronics, 2020, 9(12): 2162–2185. [Article] [CrossRef] [Google Scholar]
  5. AN Ying, HAO Zhao, HUO Zhaohui. Infrared and visible image fusion based on two-scale decomposition and improved saliency detection[J]. Journal of Physics: Conference Series, 2021, 1856(1): 012058–012065. [Article] [CrossRef] [Google Scholar]
  6. QIAN Kun, LI Tianyu, LI Zhe, et al. Infrared and visible image fusion algorithm based on split-attention residual networks[J]. Journal of Northwestern Polytechnical University, 2022, 40(6): 1404–1413. [Article] (in Chinese) [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  7. LI Junwu, LI Binhua, JIANG Yaoxi. An infrared and visible image fusion algorithm based on LSWT-NSST[J]. IEEE Access, 2020, 8: 179857–179880. [Article] [CrossRef] [Google Scholar]
  8. REN Long, PAN Zhibin, CAO Jianzhong, et al. Infrared and visible image fusion based on edge-preserving guided filter and infrared feature decomposition[J]. Signal Processing, 2021, 186(2): 108108–108129 [NASA ADS] [CrossRef] [Google Scholar]
  9. LI Hui, WU Xiaojun, KITTLER J. MDLatLRR: a novel decomposition method for infrared and visible image fusion[J]. IEEE Trans on Image Processing, 2020, 29: 4733–4746. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  10. LIU Yu, CHEN Xun, WANG Zengfu, et al. Deep learning for pixel-level image fusion: recent advances and future prospects[J]. Information Fusion, 2018, 42: 158–173. [Article] [CrossRef] [Google Scholar]
  11. MA Jiayi, YU Wei, LIANG Pengwei, et al. FusionGAN: a generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 2018, 48: 11–26 [Google Scholar]
  12. JIAN Lihua, YANG Xiaomin, LIU Zheng, et al. SEDRFuse: a symmetric encoder-decoder with residual block network for infrared and visible image fusion[J]. IEEE Trans on Instrumentation and Measurement, 2021, 70: 13–87 [Google Scholar]
  13. ZHANG Yu, LIU Yu, SUN Peng, et al. IFCNN: a general image fusion framework based on convolutional neural network[J]. Information Fusion, 2020, 54: 99–118. [Article] [CrossRef] [Google Scholar]
  14. HAO Shuai, HE Tian, MA Xu, et al. NOSMFuse: an infrared and visible image fusion approach based on norm optimization and slime mold architecture[J]. Applied Intelligence, 2022, 53(5): 5388–5401 [Google Scholar]
  15. GUO Zhaoyang, YU Xiantao, DU Qinglei. Infrared and visible image fusion based on saliency and fast guided filtering[J]. Infrared Physics and Technology, 2022, 123(3): 104178–104186 [NASA ADS] [CrossRef] [Google Scholar]
  16. CHEN Jun, LI Xuejiao, LUO Linbo, et al. Infrared and visible image fusion based on target-enhanced multiscale transform decomposition[J]. Information Sciences, 2020, 508(4): 64–78 [CrossRef] [Google Scholar]
  17. GAURAV D, MEENAKSHI G, ATULYA N, et al. A novel algorithm for global optimization: rat swarm optimizer[J]. Journal of Ambient Intelligence and Humanized Computing, 2020, 12(10): 8457–8482 [Google Scholar]
  18. ZHANG Hao, XU Han, XIAO Yang, et al. Rethinking the image fusion: a fast unified image fusion network based on proportional maintenance of gradient and intensity[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020 [Google Scholar]
  19. LI Hui, WU Xiaojun, DURRANI T. NestFuse: an infrared and visible image fusion architecture based on nest connection and spatial/channel attention models[J]. IEEE Trans on Instrumentation and Measurement, 2020, 69(12): 9645–9656 [CrossRef] [Google Scholar]
  20. MA Jiayi, TANG Linfeng, XU Meilong, et al. STDFusionNet: an infrared and visible image fusion network based on salient target detection[J]. IEEE Trans on Instrumentation and Measurement, 2021, 70: 1–13 [CrossRef] [Google Scholar]
  21. LI Hui, WU Xiaojun. DenseFuse: a fusion approach to infrared and visible images[J]. IEEE Trans on Image Processing, 2018, 28(5): 2614–2623 [Google Scholar]
  22. YANG Yanchun, LI Jiao, WANG Yangping. Review of image fusion quality evaluation methods[J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(7): 1021–1035 (in Chinese) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.