Open Access
Issue |
JNWPU
Volume 43, Number 1, February 2025
|
|
---|---|---|
Page(s) | 24 - 30 | |
DOI | https://doi.org/10.1051/jnwpu/20254310024 | |
Published online | 18 April 2025 |
- GREITZER E M, BONNEFOY P A, DE LA ROSA BLANCO E, et al. N+3 aircraft concept designs and trade studies[R]. NASA/CR-2010-216794, 2010 [Google Scholar]
- GRAHAM W R, HALL C A, MORALES M V. The potential of future aircraft technology for noise and pollutant emissions reduction[J]. Transport Policy, 2014, 34: 36–51 [Article] [CrossRef] [Google Scholar]
- ORDOUKHANIAN E, MADNI A M. Blended wing body architecting and design: current status and future prospects[J]. Procedia Computer Science, 2014, 28: 619–625 [Article] [Google Scholar]
- XIA Ming, GONG Guojing, HUANG Tao, et al. Optimal design on BWB body profile under cabin and cargo arrangement constraints[J]. Aeronautical Computing Technique, 2019, 49(4): 27–30 (in Chinese) [Google Scholar]
- CHEN Zhenli, ZHANG Minghui, CHEN Yingchun, et al. Assessment on critical technologies for conceptual design of blended-wing-body civil aircraft[J]. Chinese Journal of Aeronautics, 2019, 32(8): 1797–1827 [Article] [CrossRef] [Google Scholar]
- ALI M Z, KUNTJORO W, WISNOE W, et al. Aerodynamics analysis on the effect of canard aspect ratio on blended wing body aircraft using CFD simulation[J]. Materials Science and Engineering, 2020, 834(1): 012015 [Google Scholar]
- SANIM F, IMISI-OLUWA A, MAT S, et al. Experimental studies of the effect of rectangular-shaped canard on a generic blended wing body (BWB)[C]//International Seminar on Aeronautics and Energy, Singapore, 2022: 3-17 [Google Scholar]
- KAPSALIS S, BLIAMIS C, KAPAROS P, et al. Parametric investigation of canards on a flying wing UAV using the Taguchi method[J]. Aerospace, 2023, 10(3): 264 [Article] [Google Scholar]
- XIA Ming, YUAN Changyun, GONG Wenxiu, et al. Low-speed lon-gitudinal aerodynamic influence of canard on BWB aircraft[J]. Acta Aerodynamica Sinica, 2020, 38(5): 1004–1010 (in Chinese) [Google Scholar]
- LIU Peiqing, YI Yuan. Vortex interaction mechanism and control technology of canard configuration at high angle of attack[J]. Acta Aerodynamica Sinica, 2020, 38(6): 1034–1046 (in Chinese) [Google Scholar]
- GARCÍA-ORTIZ J H, BLANCO-RODRÍGUEZ F J, PARRAS L, et al. Experimental observations of the effects of spanwise blowing on the wingtip vortex evolution at low Reynolds numbers[J]. European Journal of Mechanics-B/Fluids, 2020, 80: 133–145 [Article] [Google Scholar]
- MEYER J, SEGINER A. Effects of periodic spanwise blowing on delta-wing configuration characteristics[J]. AIAA Journal, 1994, 32(4): 708–715 [Article] [Google Scholar]
- LIU Jie, LIU Peiqing, CAO Shuo. Lift-enhancement of canard-spanwise pulsed blowing of non-coplanar close-coupled canard configuration[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(4): 37–41 (in Chinese) [Google Scholar]
- LIU Peiqing, FAN Wenbo, CAO Shuo. Numerical simulation on vortex-control technology of canard-spanwise blowing of close-coupled canard wing configuration[J]. Aircraft Design, 2010, 30(5): 7–11 (in Chinese) [Google Scholar]
- LIU Peiqing, WEN Ruiying, ZHANG Guowei. A study on lift enhancement with vortex control technique of canard-spanwis blowing[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(3): 39–44 (in Chinese) [Google Scholar]
- WANG Yuntao. An overview of HiLiftPW-1 to HiLiftPW-3 numerical simulation technologies[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7): 021997 (in Chinese) [Google Scholar]
- RUMSEY C L, SLOTNICK J P. Overview and summary of the second AIAA high-lift prediction workshop[J]. Journal of Aircraft, 2015, 52(4): 1006–1025 [Google Scholar]
- AMITAY M, SMITH D R, KIBENS V, et al. Aerodynamic flow control over an unconventional airfoil using synthetic jet actuators[J]. AIAA Journal, 2001, 39(3): 361–370 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.