Issue |
JNWPU
Volume 36, Number 1, February 2018
|
|
---|---|---|
Page(s) | 42 - 48 | |
DOI | https://doi.org/10.1051/jnwpu/20183610042 | |
Published online | 18 May 2018 |
Experimental Research on the Neutralizer of Micro ECR Ion Thruster
微推力ECR离子推力器中和器实验研究
1
School of Astronautics, Northwestern Polytechnic University, Xi'an 710072, China
2
Shanghai Institute of Aerospace Control Technologyal Institute, Shanghai 201109, China
Received:
12
April
2017
As the key component of micro electron cyclotron resonance (ECR) ion thruster, the initial gas discharge and electron beam extraction performance of ECR neutralizer plays an important role in the whole performance of ECR ion thruster. The experiment on the neutralizer is completed to study the influence of the antenna structure, cavity length and electronic extraction board on the performance. The experimental results show that, within a certain range, as the length of the cavity is longer, the annular segment of antenna is slightly higher than ECR zone and the width of annular segment is smaller, the performance of the neutralizer is better. There is a reasonable structure for the electronic extraction board to make the performance of the neutralizer better. According to the experimental results, the optimal structure of the neutralizer is determined. For Xe gas, when the microwave power is 2.0W and the gas flow rate is 0.2sccm, the best performances of the optimal neutralizer are that extracted electron beam and coupling voltage is 4mA and 31.5V respectively.
摘要
微推力电子回旋共振(ECR)中和器作为ECR离子推力器的关键组成部分,其初始放电及电子束流引出性能对离子推力器整体性能起着重要作用。研究对象为直径2 cm的ECR离子推力器中和器,根据中和器放电室内静磁场分布,选取不同结构的天线、腔体及电子引出板,并在真空环境下进行束流引出实验。实验结果表明:在一定范围内,腔体长度越长、天线环形段略高于ECR区且环形段宽度越小时,中和器性能越好;对于电子引出板存在一个合理结构使得中和器性能更佳。此外,在一定的偏压及气体流量范围内,无论采用哪种结构的腔体、天线及电子引出板,中和器引出的电子束流的大小均随偏压及气体流量的增加而增加。根据实验中不同组合结构中和器的气体初始放电以及电子束流引出性能的对比,最终得到较为合理的中和器结构。该中和器以氙气为工质,在微波功率2.0 W、流量0.2 mL/min的工作条件下,引出电子束流4 mA所需偏压为31.5 V。
Key words: neutralizer / experiments / electron cyclotron resonance / plasma / electron beams / microwaves
关键字 : 中和器 / 实验 / 电子回旋共振 / 等离子体 / 电子束流 / 微波
© 2018 Journal of Northwestern Polytechnical University. All rights reserved.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.