Issue |
JNWPU
Volume 37, Number 5, October 2019
|
|
---|---|---|
Page(s) | 1011 - 1017 | |
DOI | https://doi.org/10.1051/jnwpu/20193751011 | |
Published online | 14 January 2020 |
Study on Temperature Characteristics of Ceramic Materials for Piezoelectric Actuators and Model Modification
压电驱动器陶瓷材料温度特性研究及模型修正
1
College of Power Engineering, Navy University of Engineering, Wuhan 430033, China
2
Department of Engineering Technology and Application, Army Infantry College of PLA, Nanchang 330100, China
Received:
9
October
2018
The performance of piezoelectric actuator ceramics under strong electric field(20 kV/cm) and variable temperature (30~150℃) were tested on a piezoelectric ceramic thermo-electro-mechanical multi-field loading test bench. The variation of hysteresis loop, strain loop, free capacitor and dielectric loss tangent with temperature was analyzed. A mathematical model of displacement characteristics of ceramic materials considering temperature effect is established, and the accuracy of the model is verified. The results show that the hysteresis loops become slender with the increasing of temperature, while the residual polarization, maximum polarization and coercive field decrease. The effect of the temperature on the residual polarization and coercive field is stronger than that on maximum polarization. The strain loop presents a typical butterfly curve, and the negative strain decreases gradually to 0.12% with the increasing of temperature. In the unipolar electric field, the residual polarization varies slightly with the increasing of temperature, and the maximum polarization increases about 40%. The piezoelectric constant of the material increases linearly. The free capacitor and dielectric loss tangent increases continuously. The higher the temperature, the greater the increase.
摘要
在压电陶瓷热-电-力多场耦合加载试验台上,对压电驱动器的陶瓷材料在强电场(2 kV/mm)和变温度(30~150℃)下的性能进行了测试,分析了电滞回线、应变回线以及自由电容与介电损耗角正切值随着温度的变化关系,同时建立了考虑温度影响的陶瓷材料的位移特性数学模型,并验证了模型的准确性。结果表明:随着温度的升高,双极强电场下的电滞回线逐渐变得细长,同时剩余极化、最大极化和矫顽场均下降,且温度对剩余极化和矫顽场的影响比对最大极化s的影响更为强烈,应变回线呈现典型的蝶形曲线,负应变随温度的升高而逐渐下降至0.12%;在单极工作电场下,随温度升高,剩余极化变化较小,最大极化升高明显,增加了40%左右;材料的压电常数基本呈线性增加的趋势,自由电容与介电损耗角正切值不断增大,温度越高,增幅越大。
Key words: diesel engine / piezo ceramic / hysteresis loop / strain loop / mathematical model
关键字 : 柴油机 / 压电陶瓷 / 电滞回线 / 应变回线 / 数学模型
© 2019 Journal of Northwestern Polytechnical University. All rights reserved.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.