Issue |
JNWPU
Volume 42, Number 2, April 2024
|
|
---|---|---|
Page(s) | 260 - 268 | |
DOI | https://doi.org/10.1051/jnwpu/20244220260 | |
Published online | 30 May 2024 |
Study on multi-channel air cooling thermal management of prismatic power battery pack
方形动力电池组多风道热管理研究
School of Power and Energy, Northwestern Polytechnical University, Xi'an 710129, China
Received:
28
March
2023
In this paper, a multi-channel air cooling method has been proposed for the prismatic power battery thermal management system by separating the original one channel into several using windshield, enhancing the heat dissipation capacity of the traditional air cooling system, improving the temperature uniformity of the battery pack. In this study, the temperature increment of the lithium cobalt oxide battery caused by the discharging and the relationship between the electric resistance and the depth of discharge (DOD) have been observed experimentally, furthermore, the cooling characteristics of the multi-channel thermal management system has been studied numerically. As a result, the heat dissipation effectiveness of 3 channels U type cooling system has been found is superior to others. For instance, the maximum temperature and the maximum temperature difference decrease 8.4 K and 12.4 K respectively for the 0.5 m/s air flow velocity, whereas for the case of 5 m/s air flow velocity, both the above 2 values decrease 5.3 K. The maximum temperature and the maximum temperature difference of the battery pack maintain a value in a reasonable range.
摘要
针对传统风冷式电池热管理系统的散热能力不足、电池组整体均温性较差的问题, 提出了一种分层多风道风冷式冷却方法, 采用挡风板将单风道系统分割为多风道系统, 建立了多风道动力电池热管理系统。通过实验方法测量了钴酸锂电池的放电温升以及电阻与放电深度的关系, 并针对多风道电池热管理模型进行了数值计算研究。结果表明, 三风道U型热管理系统的散热效果优于其他热管理系统。当冷却空气流速为0.5 m/s时, 三风道U型电池热管理系统的最高温度降低8.4 K, 最大温差减小12.4 K, 电池组均温性提高。当冷却空气流速为5 m/s时, 三风道U型电池热管理系统的最高温度及温差均可以降低5.3 K。使电池组的最高温度和最大温差保持在合理范围内。
Key words: prismatic power battery / air cooling / battery pack / multi-channel thermal management
关键字 : 方形动力电池 / 风冷 / 电池包 / 多风道热管理
© 2024 Journal of Northwestern Polytechnical University. All rights reserved.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.