Open Access
 Issue JNWPU Volume 39, Number 3, June 2021 586 - 592 https://doi.org/10.1051/jnwpu/20213930586 09 August 2021

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

## 1 有限元建模

### 1.1 焊接参数及几何尺寸

2种典型加筋壁板几何尺寸分别如图 1所示。

 图1加筋壁板几何尺寸

2024-T3材料属性

## 2 残余应力计算结果

### 2.1 加筋壁板A

 图2加筋壁板A有限元建模

 图3加筋壁板A温度场分布

 图4路径1残余应力演化曲线

 图5路径2残余应力演化曲线

### 2.2 加筋壁板B

 图6加筋壁板B有限元建模

 图7加筋壁板B温度场分布

 图8路径1和路径2残余应力对比

 图9路径3和路径4残余应力对比

## 3 焊接整体壁板稳定性分析

 图10加筋壁板一阶屈曲模态对比

## 4 结论

1) 对于加筋壁板A, 受焊接顺序影响, 残余应力主要集中在焊缝3附近。同时, 焊缝3的焊接过程释放了焊缝1及焊缝2附近部分残余应力。

2) 对于加筋壁板B, 残余应力基本呈对称分布, 拉应力主要集中在点焊9以及焊缝10处。且焊缝7至焊缝10应力值与焊缝3至焊缝6相比有所升高。

3) 残余应力的存在显著降低了加筋壁板临界屈曲载荷。考虑残余应力时, 加筋壁板A的临界屈曲载荷为34.4 kN, 与不考虑残余应力时相比降低了14.2%。而加筋壁板B在考虑残余应力后临界屈曲载荷降低了12.4%。

## References

1. Bai Chengzheng, Song Xin, Sheng Hongwei, et al. Study on estimation method of tensile strength of aircraft stiffened-welded plate[J]. Journal of Mechanical Strength, 2019, 41 (1): 157– 162 [Article](in chinese) [Google Scholar]
2. Liu Jianguang, Hu Zhongmin, Wu Wei. Residual stress and deformation in friction stir welding of aluminium stiffened panel[J]. Journal of Netshape Forming Engineering, 2017, 9 (4): 101– 106 [Article](in chinese) [Google Scholar]
3. Fu Ruidong, Li Yijun. Development and prospect of friction stir welding technology in China[J]. Metal Processing (Hot-working), 2020, 6: 14– 18 [Article](in chinese) [Google Scholar]
4. Jing Huiqiang, Jia Yankui, Liu Guoying, et al. Research on welding residual stress calculation of large and multi-weld structure[J]. Welding Technology, 2017, 46 (2): 23– 26 [Article](in chinese) [Google Scholar]
5. Luan Guohong, North T H, Guo Delun, et al. Characterizations of friction stir welding on aluminum alloy[J]. Trans of the China Welding Institution, 2002, 23 (6): 62– 66 [Article](in chinese) [Google Scholar]
6. Cheng Zhongshan, Lin Qingyu, Wang Kuanfu. To analuse the residual stress of cruciform welding seams on spherical vessels and repair the defects thereof[J]. Petroleum Engineering Construction, 1994, 4: 38– 41 [Article](in chinese) [Google Scholar]
7. Zhang Tianchi, Zhang Ming, Li Bo, et al. Testing method for residual stress in welds of manned spacecraft cabin based on electronic speckle pattern interferometry[J]. Manned Spaceflight, 2018, 24 (5): 674– 678 [Article](in chinese) [Google Scholar]
8. Lee Jaeho, Jang Beomseon, Kim Hyeonjin, et al. The effect of weld residual stress on fracture toughness at the intersection of two welding lines of offshore tubular structure[J]. Marine Structures, 2020, 7: 102708 [Article] [Google Scholar]
9. Jun S M, Hong C S. Buckling behavior of laminated composite cylindrical panels under axial compression[J]. Computers & Structures, 1988, 29 (3): 479– 490 [Article] [Google Scholar]
10. Li Zhenyuan. The study of compression instability load estimated methods of new stiffened-welded aircraft plate[D]. Harbin: Harbin University of Science and Technology, 2016(in Chinese) [Google Scholar]
11. Guo Min. Study of welding buckling distortion and its influence factors of a multiply stiffened thin-plate structure under single-side welds[D]. Shanghai: Shanghai Jiaotong University, 2017(in Chinese) [Google Scholar]
12. Zhou Liang. Numerical simulation of welding buckling deformation in thin plates with considering initial residual stress influences[D]. Chongqing: Chongqing Jiaotong University, 2018(in Chinese) [Google Scholar]
13. Yu Jian. On mechanical properties of friction stir welded stiffened panel considering the effect of connection[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018(in Chinese) [Google Scholar]
14. Yoon J W, Bray G H, Valente R A F, et al. Buckling analysis for an integrally stiffened panel structure with a friction stir weld[J]. Thin-Walled Structures, 2009, 47 (12): 1608– 1622 [Article] [Google Scholar]
15. Murphy A, Ekmekyapar T, Zakca M, et al. Buckling/post-buckling strength of friction stir welded aircraft stiffened panels[J]. Journal of Aerospace Engineering, 2014, 228 (2): 178– 192 [Article] [Google Scholar]
16. Murphy A, Mccune W, Quinn D, et al. The characterisation of friction stir welding process effects on stiffened panel buckling performance[J]. Thin-Walled Structures, 2007, 45 (3): 339– 351 [Article] [Google Scholar]
17. Murphy A, Lynch F, Price M, et al. Modified stiffened panel analysis methods for laser beam and friction stir welded aircraft panels[J]. Proceedings of the Institution of Mechanical Engineers, 2006, 220 (4): 267– 278 [Article] [Google Scholar]
18. Chen C M, Kovacevic R. Finite element modeling of friction stir welding-thermal and thermo mechanical analysis[J]. International Journal of Machine Tools & Manufacture, 2003, 43: 1319– 1326 [Article] [Google Scholar]
19. Sonne M R, Tutum C C, Hattel J H, et al. The effect of hardening laws and thermal softening on modeling residual stresses in FSW of aluminum alloy 2024-T3[J]. Journal of Materials Processing Technology, 2013, 213: 477– 486 [Article] [Google Scholar]
20. He Xiaocong, Gu Fengshou, Ball Andrew. A review of numerical analysis of friction stir welding[J]. Progress in Materials Science, 2014, 65: 1– 66 [Article] [CrossRef] [Google Scholar]

2024-T3材料属性

## All Figures

 图1加筋壁板几何尺寸 In the text
 图2加筋壁板A有限元建模 In the text
 图3加筋壁板A温度场分布 In the text
 图4路径1残余应力演化曲线 In the text
 图5路径2残余应力演化曲线 In the text
 图6加筋壁板B有限元建模 In the text
 图7加筋壁板B温度场分布 In the text
 图8路径1和路径2残余应力对比 In the text
 图9路径3和路径4残余应力对比 In the text
 图10加筋壁板一阶屈曲模态对比 In the text

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.