Open Access
Issue
JNWPU
Volume 40, Number 3, June 2022
Page(s) 618 - 627
DOI https://doi.org/10.1051/jnwpu/20224030618
Published online 19 September 2022

© 2022 Journal of Northwestern Polytechnical University. All rights reserved.

Licence Creative CommonsThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

在未来战争中, 越发复杂的战场环境和飞行任务对飞行器提出了更严格的要求。但传统飞行器外形固定不变的模式, 无法保证飞行器在大速度包络任务中具有很好的表现。因此, 变外形飞行器的概念应运而生。

在变外形飞行器变形规律研究方面, Oliviu等[1]给出了上表面可变形翼的数值模拟和风洞试验结果, 对变形规律的研究有一定的参考价值。Koreanschi等[2-3]通过对翼型的优化设计, 研究了翼型变形对减阻的影响。这些对于变外形飞行器气动性能的探索, 为后来的飞行器变形机构和变形规律研究奠定了基础。吕吉婵等[4]将遗传算法与CAD和CFD软件相结合, 得到了变后掠机翼在中、低空下的最优变后掠规律。刘璐等[5]将CFD数值模拟与Matlab软件相结合, 研究了不同高度下变后掠翼飞行器的最佳变形规律。但如果结合弹道来研究变形规律, 直接采用试验或CFD数值模拟提供气动性能会导致计算负担过重或计算耗时过长。近年来蓬勃发展的变精度代理模型技术可用于变外形飞行器的气动性能建模[6-7], 能够在弹道优化求解过程中提供气动输入, 有效节约计算资源, 减少计算耗时。

在弹道优化方面, 直接打靶法、粒子群算法和伪谱法等都是常用的最优控制方法。王方鹏等[8]将攻角作为控制变量, 利用打靶法得到了最优攻角变化规律。但直接打靶法仅适用于较简单、精度要求不高的最优控制问题[9], 李伟明和郭杰等[10-11]利用粒子群算法, 研究了变后掠飞行器的增程能力与发射条件的关系。但粒子群算法收敛精度较低、收敛速度慢, 会进一步增加变外形飞行器弹道优化问题的计算负担。伪谱法在求解最优控制问题时融合了间接法和直接法的优点, 在飞行器弹道优化方面逐渐成为研究热门。其中, hp自适应伪谱法对初始猜测值不敏感, 适应性强, 能够有效节省计算时间, 适用于处理控制变量较多的问题, 在高超声速飞行器最优弹道和再入弹道优化, 以及变外形飞行器变形规律研究等方面都有较好的效果。龚春林等[12]基于hp自适应伪谱方法, 对翼型分布式变体问题进行了弹道优化, 获得了更省燃料质量的飞行方案, 但该飞行器的变形部位是翼型, 变形量较小。王娜等[13]针对后掠角和攻角2个控制变量, 采用hp自适应伪谱法, 优化得到了飞行器的变形规律, 但优化时并没有考虑飞行器的发动机性能。

本文基于较多的低精度CFD仿真结果和少量的高精度CFD仿真结果, 建立变精度代理模型, 以此模型预测变外形飞行器在不同变形状态和工况下的气动性能, 运用hp自适应伪谱法对变外形飞行器开展了以燃料消耗最少为优化目标的弹道优化, 并与固定翼飞行器进行了对比分析。

1 问题描述

本文提出了一种能够进行低亚声速和跨声速巡航的变外形飞行器, 其弹道剖面如图 1所示。

飞行器首先以较低的初始速度从地面起飞, 然后爬升到高速巡航高度; 完成高速巡航任务后, 飞行器减速并下降到低速巡航高度; 完成低速巡航任务后, 飞行器再次下降并加速对目标进行压制打击。根据飞行任务要求, 弹道参数要求为: ①高速巡航时高度大于14 km, 巡航速度不小于0.9Ma; ②低速巡航时高度不大于3 km, 巡航速度不大于0.35Ma; ③压制打击高度为0.1 km, 打击速度为0.8Ma; ④总航程不小于600 km; ⑤总巡航时间不低于40 min。因此, 需要进行优化的飞行弹道可以分为3个主要阶段: 加速爬升阶段、减速下降阶段和加速下降阶段。

为完成飞行任务, 本文提出了一种后掠角和轴向位置可变的变形机翼, 机翼后掠角的变化可以使飞行器兼顾亚/跨声速性能, 而机翼轴向位置的变化可以保证飞行器的纵向静稳定性。考虑到机翼结构强度和指标限制要求, 机翼后掠角变化范围为0°~42°, 轴向位置变化范围为0~370 mm。机翼通过剪切变形来改变形状, 因此翼型始终与来流保持平行。为了使飞行器具有合理的纵向静稳定度, 当后掠角增大时, 机翼向前移动, 反之亦然。该飞行器的外形示意图如图 2所示。机翼变形的极限位置俯视图如图 3所示, 分别为后掠角为0°和42°情况。另外, 除飞行器外形参数外, 在进行弹道优化时, 还需考虑飞行器发动机控制参数和弹道上的飞行攻角。

thumbnail 图1

弹道剖面示意图

thumbnail 图2

变外形飞行器外形示意图

thumbnail 图3

机翼极限位置俯视图

2 变外形飞行器最优弹道研究方法

2.1 求解流程

对于变外形飞行器, 要研究其最优弹道, 首先要获得各个外形在不同飞行状态下的气动性能, 然后进行弹道优化。本文中研究的变外形飞行器, 机翼的后掠角和轴向位置在飞行过程中都可以改变, 且飞行状态和几何外形的变化范围较大, 会导致直接基于CFD仿真的弹道优化的计算量过大。为了提高弹道优化效率, 本文提出一种基于变精度Kriging模型的流程, 采用大量低精度CFD仿真数据和少量高精度CFD仿真数据建立气动性能模型, 以此来预测各个外形在不同飞行状态下飞行器的气动性能。

基于变精度模型的变外形飞行器弹道优化, 是利用上述建立的变精度模型提供气动输入, 利用hp自适应伪谱法控制飞行器攻角、发动机参数和变形参数, 获得最优变形规律。研究的具体流程如图 4所示。

1) 根据确定任务剖面, 选择典型飞行状态, 包括飞行速度和飞行攻角;

2) 在选择的典型飞行状态下, 根据变形翼的2个变形参数(后掠角和机翼轴向位置)选择用于高、低精度仿真分析的变形构型;

3) 分别采用Euler和N-S求解器对低精度和高精度分析的构型进行CFD仿真, 得到高、低气动力数据;

4) 在不同飞行状态下, 建立变外形飞行器的变精度Kriging模型;

5) 分析飞行状态和变形参数对飞行器气动性能的影响, 确定控制变量与状态变量;

6) 将气动性能模型作为输入, 利用伪谱法对飞行器的弹道进行优化。

thumbnail 图4

弹道优化研究流程

2.2 变精度Kriging模型

对于实际工程应用, 即使采用代理模型直接对高精度数据建模, 有时也是难以承受的, 因为高精度分析的耗时非常大。变精度模型提供了一种更为高效的建模方法[14-19], 采用大量代价少的低精度数据预测模型趋势, 采用少量昂贵的高精度数据修正模型的局部精度。变精度Kriging代理模型(multi-fidelity Kriging, MFK)采用了具有一阶自动递归的MFK模型来建模[20-21], 与多层Kriging(hierarchical Kriging, HK)模型类似[22-24]。在本文中, 采用无黏欧拉方程求解的气动力作为低精度数据, 采用N-S方程求解的气动力作为高精度数据, 只有2级精度。因此建立的MFK模型可以简化成如下形式

式中: ρ(x)为高、低精度数据间的尺度/相关因子, 可以是常数、线性函数或二次函数; δ(x)为差异函数; ylow(x)为低精度数据建立的代理模型; yhigh(x)为高精度数据建立的代理模型。

在(1)式中, 代理模型采用了Kriging模型, 用于高、低精度数据的建模。Kriging模型对非线性问题具有很好的预测能力, 而且能够在建模的同时获得模型的预测误差。Kriging模型的具体建模过程参考文献[25-26]。δ(x)是与低精度模型ylow(x)无关的高斯过程。ρ(x)代表了高、低精度模型之间的相关程度, 体现了高、低精度模型尺度的关系, 可以通过(2)式进行计算

式中: cov[yhigh(x), ylow(x)]为高、低精度模型之间的协方差矩阵; var[ylow(x)] 为低精度模型的方程矩阵。

采用Kriging模型替代高、低精度模型有利于协方差和方程计算, 适用于该变精度建模方法。

2.3 基于hp自适应伪谱法的最优弹道问题求解

考虑到变外形飞行器弹道优化问题设计空间复杂, 选择直接法中计算性能较高的hp自适应伪谱法[27-28]进行弹道优化计算。hp自适应伪谱法结合了伪谱法和hp型有限元法的优点, 能够最大限度地保证近似精度, 同时降低计算量。

常规伪谱法将状态变量和控制变量在若干配点上离散, 然后以各离散配点为节点, 利用Lagrange插值基函数来全局近似状态变量和控制变量。这样, 连续的最优控制问题可以转化为离散的非线性规划(nonlinear programming, NLP)问题。为了避免常规伪谱法设计变量数目过多的问题, 自适应伪谱法将整个连续问题分成多个片段, 在每个片段内应用常规伪谱法, 其迭代示意图如图 5所示, 步骤简要介绍如下:

1) 初始化求解问题, 分割初始网格时间片段, 对配置点数和容许偏差等参数进行设置;

2) 采用常规伪谱法对各个时间片段求解NLP问题;

3) 检验每个时间片段中得到的变量能否满足容许偏差, 若满足则计算停止,否则执行步骤4);

4) 对于不满足容许偏差的时间片段, 若残差向量为一致型则增加配点数量,否则在该时刻增加时间片段;

5) 更新所有时间片段, 返回步骤2)。

thumbnail 图5

hp自适应伪谱法迭代流程

3 结果分析

3.1 气动性能建模结果

在建立MFK模型时, 在飞行包络内, 选取的马赫数为{0.35, 0.5, 0.65, 0.8, 0.95}, 攻角为{0°, 2°, 4°, 6°, 8°}, 共25种飞行状态。针对每种状态, 考虑到飞行器的气动性能以及后掠角和机翼轴向位置的限制, 选择不同外形进行CFD计算。经过分析共选择了240个点进行无黏气动性能计算, 110个点来进行有黏气动性能计算。本节将这些无黏和有黏气动性能计算的结果分别作为低精度和高精度数据来进行气动性能建模。

对于0.35Ma情况时, 机翼全展开为最优外形; 对于0.95Ma情况时, 机翼达到最大后掠角为最优外形。另外考虑到压力中心的限制, 在0.35Ma和0.95Ma情况时, 机翼应分别位于可移动范围的最后端和最前端, 即2 600 mm处和2 230 mm处。由此确定了这2个马赫数下气动外形, 无需建立这2种工况下的变精度Kriging模型。对于其他飞行状态, 在每个状态下分别建立升力系数、阻力系数和压力中心3个变精度Kriging模型, 共建立45个模型。另外, 升阻比模型不是直接建模得到的, 而是用升力系数和阻力系数模型计算得到。

在建立变精度Kriging模型时, 使用了开放源码工具箱(surrogate model toolbox, SMT)[29]。以0.65Ma, 0°攻角情况为例, 建立的气动性能代理模型如图 6所示。从图中可以看出, 变外形飞行器的升阻力系数随后掠角的增大而减小, 机翼轴向位置对升阻力系数的影响很小, 对压力中心影响明显。

MFK模型建立后, 采用留一交叉验证方法对所有的飞行状态下升力系数、阻力系数和压力中心的模型精度进行验证。不同飞行状态的评价指标RMSERRMSE表 1~6所示。

从表中可以看出, 多数RMSERRMSE较小, 其中75%以上的RRMSE不超过5%, 且最大的RRMSE为8.06%, 在工程上可以接受。因此, 变精度Kriging模型具有足够的精度, 可以用于后续的优化和气动输入。

thumbnail 图6

0.65Ma时0°攻角的MFK模型

表1

不同飞行状态下ClRMSE

表2

不同飞行状态下CdRMSE

表3

不同飞行状态下xpRMSE

表4

不同飞行状态下ClRRMSE %

表5

不同飞行状态下CdRRMSE %

表6

不同飞行状态下xpRRMSE %

3.2 弹道优化条件设置

本文进行弹道优化时, 基于瞬时平衡假设, 只研究飞行器质心在纵向平面内的运动。分析3.1中飞行器的气动性能可知, 影响变外形飞行器气动性能的因素主要是后掠角, 机翼轴向位置对气动性能的影响很小。在本节中, 仅研究后掠角对飞行器弹道的影响。为保证静稳定性, 将飞行器机翼位置定义为后掠角的线性函数, 后掠角增大时机翼由最末端移向最前端。

飞行器弹道优化的一个重要指标是燃料消耗, 故以最小化燃料消耗为目标函数, 即

约束条件为:

1) 初始约束条件: 飞行器某段弹道投放初始时刻t0时状态变量的初值, 包括飞行器初始点的位置(x0, y0)、初始速度v0和初始弹道倾角θ0, 根据飞行任务给定约束, 即

2) 终端约束条件: 飞行器弹道末端时刻状态变量的值, 包括飞行器末点的位置(xf, yf)、末点速度vf和末点弹道倾角θf, 根据飞行任务给定约束, 即

3) 过程约束条件: 飞行器实际飞行过程中状态变量的值, 在飞行过程中过大的飞行速度会导致过载过大, 破坏飞行器机体结构; 同时, 由于希望飞行器平稳上升和下降, 要对飞行器的弹道倾角进行约束, 故过程约束包括飞行速度vmax和弹道倾角θ, 即

4) 控制变量约束条件: 适当限制控制变量的变化范围可以保证弹道的平滑和良好的飞行性能, 除飞行器的攻角α和发动机转速n外, 还包括飞行器的变形量后掠角χ, 机翼轴向位置xa由后掠角χ得到, 根据飞行任务给定约束, 即

式中, ξ指各个变量到参考点的偏差值。对于3段需要进行优化的弹道来说, 每段弹道约束条件分别设置如下。

1) 加速爬升段: 初始条件m0=1 000 kg, x0=0, y0=0, v0=0, θ0=20°; 末端约束设置为xf≤100 km, yf≥14 km, vf≥0.9Ma, |θf|≤20°; 过程约束条件设置为vf≤1.2Ma, |θf|≤60°; 控制变量约束条件设置为8°≤α≤14°, 0°≤χ≤42°, 28 000 r/min≤n≤36 000 r/min。

2) 减速下降段: 初始条件m0=888 kg, x0=0, y0=14 km, v0=0.95Ma, θ0=-10°; 末端约束设置为xf≤100 km, yf≤3 km, vf≤0.35Ma, |θf|≤20°; 过程约束条件设置为vf≤1.2Ma, |θf|≤60°; 控制变量约束条件设置为4°≤α≤14°, 0°≤χ≤42°, 24 000 r/min≤n≤36 000 r/min。

3) 加速下降段: 初始条件m0=800 kg, x0=0, y0=3 km, v0=0.35Ma, θ0=40°; 末端约束设置为xf≤100 km, yf≤0.1 km, vf≥0.8Ma, |θf|≤50°; 过程约束条件置为vf≤1.2Ma, |θf|≤60°; 控制变量约束条件设置为-4°≤α≤0°, 0°≤χ≤42°, 24 000 r/min≤n≤36 000 r/min。

3.3 弹道优化结果

下文对固定翼飞行器和变外形飞行器的3段优化弹道及弹道参数进行对比分析。其中, 固定翼飞行器是变外形飞行器机翼后掠角为42°、轴向位置在最前端时(见图 3b))的外形。

1) 加速爬升段

固定翼飞行器和变外形飞行器加速爬升段的弹道及参数变化如图 7~13所示。

从图中可以看出, 变外形飞行器能够在较短时间和射程内迅速加速爬升到14 km高度, 且能达到0.9Ma的巡航速度要求。与固定翼飞行器相比, 节省了40%的爬升时间。固定翼飞行器和变外形飞行器加速爬升段末尾质量分别为930和950 kg, 变外形飞行器能够节省28.57%的燃料。2种飞行器攻角和发动机转速虽然最后都稳定于同一定值, 但在弹道的前半段固定翼飞行器的攻角和发动机转速整体略高于变外形飞行器。这是由于飞行器发射速度较低, 固定翼飞行器42°的后掠角使其升力较小, 需要更大的攻角和推力来完成加速爬升任务。

2) 减速下降段

固定翼飞行器和变外形飞行器减速下降段的弹道及参数变化如图 14~20所示。

变外形飞行器能够在较短时间和射程内迅速减速下降到飞行任务要求的高度, 也能达到巡航速度要求, 节省了25%的下降时间。固定翼飞行器和变外形飞行器加速爬升段末尾的质量分别为860和882 kg, 分别消耗了10和6 kg的燃料, 故在减速下降段变外形飞行器能够节省40%的燃料。变外形飞行器的攻角整体高于固定翼飞行器, 波动更少。这是由于变外形飞行器的燃料消耗较少, 质量高于固定翼飞行器, 因此需要更大的升力。

3) 加速下降段

固定翼飞行器和变外形飞行器加速下降段的弹道及参数变化如图 21~27所示。

从图中可以看出, 变外形飞行器能够在较短时间内下降到飞行任务要求的高度, 也能达到巡航速度要求, 节省了20.83%的时间, 能够更迅速地实施突防打击。固定翼飞行器和变外形飞行器加速下降段末尾的质量分别为767和790 kg, 分别消耗了11和10 kg的燃料, 故在加速下降段变外形飞行器能够节省9.09%的燃料。变外形飞行器加速性能更好, 在弹道开始前期就已经加速到了较大的马赫数, 因此整体射程更长。变外形飞行器的攻角整体低于固定翼飞行器, 且波动更少。这是由于变外形飞行器机翼处于全展开状态, 整体升力更大, 若攻角过大飞行器无法满足下降要求。

综合以上对比结果可知, 变外形飞行器能够通过灵活改变自身外形来改变气动特性, 从而能够花费较短的时间满足不同飞行任务的要求。同时, 从完整的飞行弹道来看, 相同飞行目标下变外形飞行器比固定翼飞行器节省9.87%燃料。故而变外形飞行器在宽速域、多任务的方案飞行弹道中具有更大的优势, 通过兼顾高速和低速飞行, 能够执行更复杂的战场任务。

thumbnail 图7

弹道对比

thumbnail 图8

速度对比

thumbnail 图9

质量对比

thumbnail 图10

攻角对比

thumbnail 图11

发动机转速对比

thumbnail 图12

后掠角变化

thumbnail 图13

轴向位置变化

thumbnail 图14

弹道对比

thumbnail 图15

速度对比

thumbnail 图16

质量对比

thumbnail 图17

攻角对比

thumbnail 图18

发动机转速对比

thumbnail 图19

后掠角变化

thumbnail 图20

轴向位置变化

thumbnail 图21

弹道对比

thumbnail 图22

速度对比

thumbnail 图23

质量对比

thumbnail 图24

攻角对比

thumbnail 图25

发动机转速对比

thumbnail 图26

后掠角变化

thumbnail 图27

轴向位置变化

4 结论

为避免浪费过多的计算资源, 提高变外形飞行器弹道优化效率, 本文提出了一套基于MFK建模的最优弹道求解流程, 通过留一交叉验证, 证明了MFK模型对预测气动性能的准确性, 并采用了hp自适应伪谱法对固定翼飞行器和变外形飞行器进行了弹道优化, 研究结果表明:

1) 与直接采用CFD仿真相比, 采用MFK模型的计算成本大大降低, 计算时间减少86%。

2) 较传统固定翼飞行器, 变外形飞行器通过兼顾变形参数、攻角和发动机控制参数等变量的控制, 能够保持在多任务条件下最优气动特性飞行。

3) 与固定翼飞行器的最优弹道相比, 变外形飞行器能节省9.87%的燃料, 且飞行器的上升下降效率更高。

4) 该流程为研究变外形飞行器沿弹道的最优变形规律提供了一种有效途径。

References

  1. OLIVIU S G, KOREANSCHI A, BOTEZ R M. A new non-linear vortex lattice method: applications to wing aerodynamic optimizations[J]. Chinese Journal of Aeronautics, 2016, 29(5): 1178–1195 [Article] [CrossRef] [Google Scholar]
  2. KOREANSCHI A, GABOR O S, ACOTTO J. Optimization and design of an aircraft's morphing wing-tip demonstrator for drag reduction at low speed, part Ⅰ-aerodynamic optimization using genetic, bee colony and gradient descent algorithms[J]. Chinese Journal of Aeronautics, 2017, 30(1): 149–163. [Article] [CrossRef] [Google Scholar]
  3. KOREANSCHI A, GABOR O S, ACOTTO J. Optimization and design of an aircraft's morphing wing-tip demonstrator for drag reduction at low speeds, part Ⅱ-experimental validation using infra-red transition measurement from wind tunnel tests[J]. Chinese Journal of Aeronautics, 2017, 30(1): 164–174. [Article] [CrossRef] [Google Scholar]
  4. LYU Jichan, DONG Yanfei, CHEN Yuankai. Rules of the optimal variable sweep wing in low and medium height[J]. Flight Dynamics, 2016, 32(2): 24–27. [Article] (in Chinese) [Google Scholar]
  5. LIU Lu, DONG Yanfei. Basic analysis of the best sweep variation rule about variable sweep wing-body based on aerodynamics[J]. Journal of Chongqing University of Technology, 2017, 31(8): 76–80. [Article] (in Chinese) [Google Scholar]
  6. LEE I, CHOI K, ZHAO L. Sampling-based RBDO using the dynamic Kriging (d-Kriging) method and stochastic sensitivity analysis[J]. Structural & Multidisciplinary Optimization, 2010, 44(3): 299–317 [Google Scholar]
  7. ALLAIRE D K. Surrogate modeling for uncertainty assessment with application to aviation environmental system models[J]. AIAA Journal, 2010, 48(8): 1791–1791. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  8. WANG Fangpeng, LUO Hong, WANG Haipeng. Research on parameter optimization method of air vehicle gliding trajectory[J]. Aeronautical Manufacturing Technology, 2015(suppl 1): 104–107. [Article] (in Chinese) [Google Scholar]
  9. HUANG Guoqiang, LU Yuping, NAN Ying. A survey of numerical algorithms for trajectory optimization of flight vehicles[J]. Scientia Sinica(Technologica), 2012, 42(9): 1016–1036. [Article] (in Chinese) [NASA ADS] [Google Scholar]
  10. LI Weiming, SUN Ruisheng, WU Junji. Optimization of glide trajectory for aerial bomb with morphing swept wings[J]. Journal of Ballistics, 2012, 24(2): 6–9. [Article] (in Chinese) [Google Scholar]
  11. GUO Jie, TANG Shengjing, LI Xiang, et al. Optimum design of the project trajectory based on an improved particle swarm optimization[J]. Transactions of Beijing Institute of Technology, 2010, 30(6): 682–692. [Article] (in Chinese) [Google Scholar]
  12. GONG Chunlin, CHI Fenghua, GU Liangxian, et al. Optimal control method for distributed morphing aircraft based on Karhunen-Loève expansion[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2): 121518. [Article] (in Chinese) [Google Scholar]
  13. WANG Na, CHEN Jieqing, MING Chao, et al. Optimization design for trajectory of morphing-wing missile based on hp-adaptive pseudo-spectral method[J]. Journal of Ballistics, 2016(4): 24–29. [Article] (in Chinese) [Google Scholar]
  14. TOAL J. Some considerations regarding the use of multi-fidelity Kriging in the construction of surrogate models[J]. Structural and Multidisciplinary Optimization, 2015, 51(6): 122–1245 [Google Scholar]
  15. ZAHIR M K, GAO Zhenghong. Variable-fidelity optimization with design space reduction[J]. Chinese Journal of Aeronautics, 2013(4): 14–22 [Google Scholar]
  16. HUANG Likeng, GAO Zhenghong, ZHANG Dehu. Research on multi-fidelity aerodynamic optimization methods[J]. Chinese Journal of Aeronautics, 2013, 26(2): 279–286. [Article] [CrossRef] [Google Scholar]
  17. HU Jiexiang, ZHOU Qi, JIANG Ping, et al. An adaptive sampling method for variable-fidelity surrogate models using improved hierarchical Kriging[J]. Engineering Optimization, 2017(3): 1–19 [Google Scholar]
  18. YIN Shi, ZHU Ming, LIANG Haoquan. Multi-disciplinary design optimization with variable complexity modeling for a stratosphere airship[J]. Chinese Journal of Aeronautics, 2019, 32(5): 191–202 [Google Scholar]
  19. KOZIEL S, TESFAHUNEGN Y, LEIFSSON L. Variable-fidelity CFD models and co-Kriging for expedited multi-objective aerodynamic design optimization[J]. Engineering Computations, 2016, 33(8): 2320–2338. [Article] [CrossRef] [Google Scholar]
  20. LE L G. Multi-fidelity Gaussian process regression for computer experiments[D]. Autres: Université Paris-Diderot-Paris VⅡ, 2013 [Google Scholar]
  21. HAN Zhonghua. Kriging surrogate model and its application to design optimization: a review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3197–3225. [Article] (in Chinese) [Google Scholar]
  22. HAN Zhonghua, XU Chenzhou, ZHANG Liang, et al. Efficient aerodynamic shape optimization using variable-fidelity surrogate models and multilevel computational grids[J]. Chinese Journal of Aeronautics, 2020, 33(1): 31–47. [Article] [CrossRef] [Google Scholar]
  23. ZHANG Keshi, HAN Zhonghua, GAO Zhongjian, et al. Constraint aggregation for large number of constraints in wing surrogate-based optimization[J]. J Structural and Multidisciplinary Optimization, 2019, 59(2): 421–438. [Article] [CrossRef] [Google Scholar]
  24. LI Chunna, ZHANG Yangkang. An efficient adaptive global optimization method suitable for aerodynamic optimization[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 95–107. [Article] (in Chinese) [Google Scholar]
  25. KRIGE D G. A statistical approach to some basic mine valuation problems on the witwatersrand[J]. Journal of the Southern African Institute of Mining and Metallurgy, 1951, 52(6): 119–139 [Google Scholar]
  26. LI Chunna. Adaptive optimization methodology based on Kriging modeling and a trust region method[J]. Chinese Journal of Aeronautics, 2019, 32(2): 281–295. [Article] [CrossRef] [Google Scholar]
  27. GANDHI M. Trajectory optimization algorithm studies[J]. Mathematics, 2015, 15(2): 267–281 [Google Scholar]
  28. ZHANG Boyuan, ZONG Qun, LU Hanchen, et al. Trajectory optimization of quad-rotor UAV formation using hp-adaptive pseudospectral method[J]. Science & Technology Review, 2017, 35(7): 69–76. [Article] (in Chinese) [Google Scholar]
  29. BOUHLEL M A, HWANG J T, BARTOLI N, et al. A Python surrogate modeling framework with derivatives[J]. Advances in Engineering Software, 2019, 3(5): 9965–9978 [Google Scholar]

All Tables

表1

不同飞行状态下ClRMSE

表2

不同飞行状态下CdRMSE

表3

不同飞行状态下xpRMSE

表4

不同飞行状态下ClRRMSE %

表5

不同飞行状态下CdRRMSE %

表6

不同飞行状态下xpRRMSE %

All Figures

thumbnail 图1

弹道剖面示意图

In the text
thumbnail 图2

变外形飞行器外形示意图

In the text
thumbnail 图3

机翼极限位置俯视图

In the text
thumbnail 图4

弹道优化研究流程

In the text
thumbnail 图5

hp自适应伪谱法迭代流程

In the text
thumbnail 图6

0.65Ma时0°攻角的MFK模型

In the text
thumbnail 图7

弹道对比

In the text
thumbnail 图8

速度对比

In the text
thumbnail 图9

质量对比

In the text
thumbnail 图10

攻角对比

In the text
thumbnail 图11

发动机转速对比

In the text
thumbnail 图12

后掠角变化

In the text
thumbnail 图13

轴向位置变化

In the text
thumbnail 图14

弹道对比

In the text
thumbnail 图15

速度对比

In the text
thumbnail 图16

质量对比

In the text
thumbnail 图17

攻角对比

In the text
thumbnail 图18

发动机转速对比

In the text
thumbnail 图19

后掠角变化

In the text
thumbnail 图20

轴向位置变化

In the text
thumbnail 图21

弹道对比

In the text
thumbnail 图22

速度对比

In the text
thumbnail 图23

质量对比

In the text
thumbnail 图24

攻角对比

In the text
thumbnail 图25

发动机转速对比

In the text
thumbnail 图26

后掠角变化

In the text
thumbnail 图27

轴向位置变化

In the text

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.