Open Access
Volume 36, Number 1, February 2018
Page(s) 96 - 102
Published online 18 May 2018
  1. Yang Honghui, Wang Yun, Dai Jian. Instance Selection and SVM Ensembles for Underwater Acoustic Target Recognition[J]. Journal of Northwestern Polytechnical University, 2014, 32(3): 362-366 (in Chinese)[Article] [Google Scholar]
  2. Yu Liang, Cheng Yongmei, Chen Kezhe, et al. Underwater Acoustic Target Optimum Seeking Using Evidence Theory[J]. Journal of Northwestern Polytechnical University, 2014, 32(3): 429-433 (in Chinese)[Article] [Google Scholar]
  3. Du Fangjian, Yang Honghui. Comparison of TWO Semi-Supervised Multiclass Underwater Target Recognition Algorithm[J]. Technical Acoustics, 2014, 33(2) : 10-13 (in Chinese)[Article] [Google Scholar]
  4. Wang Lei, Peng Yuan, Lin Zhengqing. The Application of Computational Auditory Peripheral Model in Underwater Target Classification[J]. Acta Electronica Sinica, 2012, 40(1) : 199-203 (in Chinese)[Article] [Google Scholar]
  5. Liu Xiankang, Liang Jing, Ren Jie, et al. Application of Modified Nearest Neighbor Fuzzy Classification Algorithm in Ship Target Recognition. Computer Engineering and Applications, 2010, 46(9) : 228-231 (in Chinese)[Article] [Google Scholar]
  6. Ji Zhengbiao, Wang Jilin, Zhao Li. Speech Emotion Recognition Based on FKNN[J]. Microelectronics & Computer, 2015, 32(3) : 59-62 (in Chinese)[Article] [Google Scholar]
  7. Denoeux T, Kanjanatarakul O, Sriboonchitta S. A Clustering Procedure Based on the Evidential K-Nearest Neighbor Rule[J]. Knowledge-Based Systems, 2015, 88: 57-69 10.1016/j.knosys.2015.08.007 [CrossRef] [Google Scholar]
  8. Antoine V, Quost B, Masson M H, et al. Constrained Evidential C-Means algorithm[J]. Computational Statistics and Data Analysis, 2012, 56(4) : 894-914 10.1016/j.csda.2010.09.021 [CrossRef] [Google Scholar]
  9. Masson M H, Denoeux T. ECM:an Evidential Version of the Fuzzy C-Means Algorithm[J]. Pattern Recognition, 2008, 41(4) : 1384-1397 10.1016/j.patcog.2007.08.014 [CrossRef] [Google Scholar]
  10. Liu Z G, Pan Q, Dezert J. A New Belief-Based K-Nearest Neighbor Classification Method[J]. Pattern Recognition, 2013, 46(3) : 834-844 10.1016/j.patcog.2012.10.001 [CrossRef] [Google Scholar]
  11. Han Deqiang, Yang Yi, Han Chongzhao. Advances in DS Evidence Theory and Related Discussions[J]. Control and Decision, 2014, 29(1) : 1-11 (in Chinese)[Article] [Google Scholar]
  12. Smarandache F, Dezert J. Advances and Applications of DSmT for Information Fusion6[M]. Rehoboth, American Research Press,2009, 34-43 [Google Scholar]
  13. Chen Yanfei, Xia Xuezhi, Hu Dangui, et al. Evidence Combination Based on Tentative Discount of Evidences[J]. Acta Electronica Sinica, 2014, 42(4) : 756-765 (in Chinese)[Article] [Google Scholar]
  14. Shi Chaoxiong, Li Ganghu, He Huihui, et al. Application of the Lifting Wavelet Transform Based MFCC in Target Identification[J]. Technical Acoustics, 2013, 33(4) : 372-375 (in Chinese)[Article] [Google Scholar]
  15. Yang Xiufang, Zhang Wei, Yang Yuxiang. Denoising Technology of Radar Life Signal Based on Lifting Wavelet Transform[J]. Acta Opitca Sinica, 2014, 34(3) : 1-6 (in Chinese)[Article] [NASA ADS] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.