Open Access
Volume 36, Number 2, April 2018
Page(s) 203 - 210
Published online 03 July 2018
  1. Okonkwo P, Smith H. Review of Evolving Trends in Blended Wing Body Aircraft Design [J]. Progress in Aerospace Sciences, 2016, 82: 1- 23 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  2. Jiménez H, Tetik H, Mavris D. Assessment of Operational Compatibility for Future Advanced Vehicle Concepts[R]. AIAA-2012-0798 [Article] [Google Scholar]
  3. Roman D, Allen J B, Liebeck R H. Aerodynamic Design Challenges of the Blended Wing Body Transport[R]. AIAA-2000-4335 [Article] [Google Scholar]
  4. Liebeck R H. Design of the Blended-Wing-Body Subsonic Transport[R]. AIAA-2002-0002 [Article] [Google Scholar]
  5. Re R J. Longitudinal Aerodynamic Characteristics and Wing Pressure Distributions of a Blended-Wing-Body Configuration at Low and High Reynolds Numbers[R]. NASA/TM-2005-213754 [Article] [Google Scholar]
  6. Pritesh C Mody, Sho Sato, David K Hall, et al. Conceptual Design of an N+3 Hybrid Wing Body Subsonic Transport[R]. AIAA-2010-4812 [Article] [Google Scholar]
  7. Liebeck R H. Design of the Blended Wing Body Subsonic Transport [J]. Journal of Aircraft, 2004, 41 1: 10- 25 [Article] [CrossRef] [Google Scholar]
  8. Roman D, Gilmore R, Wakayama S. Aerodynamics of High-Subsonic Blended-Wing-Body Configurations[R]. AIAA-2003-554 [Article] [Google Scholar]
  9. Qin N, Vavalle A, Le Moigne A, et al. Aerodynamic Considerations of Blended Wing Body Aircraft [J]. Aerospace Sciences, 2004, 40: 321- 343 [Article] [Google Scholar]
  10. Hileman J I, Spakovszky Z S, Drela M, et al. Airframe Design for Silent Fuel-Efficient Aircraft [J]. Journal of Aircraft, 2010, 47 3: 956- 969 [Article] [CrossRef] [Google Scholar]
  11. Hileman J I, Spakovszky Z S, Drela M. Aerodynamic and Aeroacoustic Three-Dimensional Design for a "Silent" Aircraft[R]. AIAA-2006-241 [Article] [Google Scholar]
  12. Hileman J I, Spakovszky Z S, Drela M, et al. Airframe Design for "Silent Aircraft"[R]. AIAA-2007-453 [Article] [Google Scholar]
  13. Sargeant M A, Hynes T P, Graham W R, et al. Stability of Hybrid-Wing-Body-Type Aircraft with Centerbody Leading-Edge Carving [J]. Journal of Aircraft, 2010, 47 3: 970- 974 [Article] [CrossRef] [Google Scholar]
  14. Pambagjo I E, Nakahashi K, Obayashi S, et al. Aerodynamic Design of a Medium Size Blended-Wing-Body Airplane[R]. AIAA-2001-0129 [Article] [Google Scholar]
  15. Mialon B, Fol T, Bonnaud C. Aerodynamic Optimization of Subsonic Flying Wing Configurations[R]. AIAA-2002-2931 [Article] [Google Scholar]
  16. Kuntawala N B, Hicken J E, Zingg D W. Preliminary Aerodynamic Shape Optimization of a Blended-Wing-Body Aircraft Configuration[R]. AIAA-2011-0642 [Article] [Google Scholar]
  17. Li Peifeng, Zhang Binqian, Chen Yingchun, et al. Aerodynamic Design Methodology for Blended Wing Body Transport [J]. Chinese Journal of Aeronautics, 2012, 25 4: 508- 516 [Article] [CrossRef] [Google Scholar]
  18. Li Peifeng, Zhang Binqian, Chen Yingchun, et al. Airfoil Design for Tailless Configurations Using DISC Algorithm [J]. Flight Dynamic 2011: 29 4: 49- 52 (in Chinese) [Article] [Google Scholar]
  19. 桑 建华 飞行器隐身技术 北京 航空工业出版社 2013

    桑建华.飞行器隐身技术[M].北京:航空工业出版社, 2013

    [Google Scholar]
  20. Sang Jianhua Low Observable Technologies of Aircraft [M]. Beijing, Aviation Industry Press, 2013 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.