Open Access
Issue
JNWPU
Volume 36, Number 3, June 2018
Page(s) 590 - 596
DOI https://doi.org/10.1051/jnwpu/20183620590
Published online 08 October 2018
  1. Yang Yang, Zhang Yiqun, Wang Dongxu, et al. Status and Trend of the Solar Energy Collection System for Space Solar Power Station[J]. Journal of Astronautics, 2016, 37(1):21-28 (in Chinese) [Article] [Google Scholar]
  2. Rouge J D. Space-Based Solar Power as an Opportunity for Strategic Security[J]. National Security Space Office, 2007 2-4 [Article] [Google Scholar]
  3. Koomanoff F A. Satellite Power System Concept Development and Evaluation Program[J]. Space Sol Power Rev, 1981, 2 1-2 [Article] [Google Scholar]
  4. Carrington C, Fikes J, Gerry M, et al.. The Abacus/Reflector and Integrated Symmetrical Concentrator-Concepts for Space Solar Power Collection and Transmission[C]//35th Intersociety Energy Conversion Engineering Conference and Exhibit, 2000: 3067 [Google Scholar]
  5. Seboldt W, Klimke M, Leipold M, et al. Hanowski, European Sail Tower SPS Concept[J]. Acta Astronautica, 2001, 48 785-792 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  6. Sasaki S, Tanaka K, Higuchi K, et al. A New Concept of Solar Power Satellite:Tethered-SPS[J]. Acta Astronautica, 2007, 60 153-165 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  7. Takeichi N, Ueno H, Oda M. Feasibility Study of a Solar Power Satellite System Configured by Formation Flying[J]. Acta Astronautica, 2005, 57 698-706 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  8. Hou Xinbin, Wang Li, Zhang Xinhua, et al. Concept Design on Multi-Rotary Joints SPS[J]. Journal of Astronautics, 2015, 36(11):1332-1338 (in Chinese) [Article] [Google Scholar]
  9. Fujii H A, Watanabe T, Kojima H, et al.. Control of Attitude and Vibration of a Tethered Space Solar Power Satellite[C]//AIAA Guidance Navigation and Control Conference and Exhibit, 2003 [Google Scholar]
  10. Zhou D, Fan J. Slewing Maneuver and Vibration Control of Tethered Space Solar Power Satellite[C]//Proceedings of the Second International Conference on Mechanic Automation and Control Engineering, 2011: 5239–5242 [Google Scholar]
  11. Zhou Di, Fan Jixiang. Active Vibration Control of Tethered Solar Power Satellite during Attitude Maneuvering[J]. Journal of Astronautics, 2012, 33(5):605-611 (in Chinese) [Article] [Google Scholar]
  12. Zhou Di, Fan Jixiang. Boundary Control in the Attitude Maneuvering of Tethered Space Solar Power Satellite[J]. Journal of Vibration Engineering, 2013, 26(1):41-47 (in Chinese) [Article] [Google Scholar]
  13. Fan J, Fujii H A, Yano Y. Tether Technology for Active Vibration Control of Tethered Space Solar Power Satellite[C]//The IPSI BgD Trans on Advanced Research, 2013:27–31 [Google Scholar]
  14. Fujii H A, Sugimoto Y, Watanabe T, et al. Tethered Actuator for Vibration Control of Space Structures[J]. Acta Astronautica, 2015, 117 55-63 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  15. Senda K, Goto T. Dynamics Simulation of Flexible Solar Power Satellite Using Geomagnetic Control[C]//The 24th Workshop on JAXA Astrodynamics and Flight Mechanics, 2014: 215 [Google Scholar]
  16. Ishimura K, Higuchi K. Coupling between Structural Deformation and Attitude Motion of Large Planar Space Structures Suspended by Multi-Tethers[J]. Acta Astronautica, 2007, 60 691-710 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  17. Wei Yi, Deng Zichen, Li Qingjun, et al. Analysis of Dynamic Response of Tethered Space Solar Power Station[J]. Journal of Astronautics, 2016, 37(9):1041-1048 (in Chinese) [Article] [Google Scholar]
  18. Shabana A A. Dynamics of Multibody Systems Cambridge University Press, 2013 [CrossRef] [Google Scholar]
  19. Ying Zuguang. Advanced Dynamics——Theory and Application[M]. Hangzhou, Zhejiang University Press, 2011 36-65 [Google Scholar]
  20. Feng Kang, Qin Mengzhao. Symplectic Geometric Algorithms for Hamiltonian Systems[M]. Hangzhou, Zhejiang Science and Technology Press, 2003 [Google Scholar]
  21. Deng Zichen, Cao Shanshan, Li Qingjun, et al. Dynamic Behavior of Sail Tower SPS Based on the Symplectic Runge-Kutta Method[J]. Scientia Sinica(Technologica), 2016, 46(12):1242-1253 (in Chinese) [Article] [Google Scholar]
  22. Huang Y, Deng Z, Yao L. An Improved Symplectic Precise Integration Method for Analysis of the Rotating Rigid-Flexible Coupled System[J]. Journal of Sound and Vibration, 2007, 299(1/2):229-246 [NASA ADS] [CrossRef] [Google Scholar]
  23. Sun G. A Simple Way Constructing Symplectic Runge-Kutta Methods[J]. Journal of Computational Mathematics, 2000, 18(1):61-68 [Google Scholar]
  24. Wie B, Roithmayr C M. Attitude and Orbit Control of a Very Large Geostationary Solar Power Satellite[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(3):439-451 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  25. Omar M A, Shabana A A. A Two-Dimensional Shear Deformable Beam for Large Rotation and Deformation Problems[J]. Journal of Sound and Vibration, 2001, 243(3):565-576 [Article] [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.