Open Access
Volume 36, Number 4, August 2018
Page(s) 693 - 700
Published online 24 October 2018
  1. Li Bintai, Xing Liying, Bao Jianwen, et al. Research and Development Progress of National Key Laboratory of Advanced Composites on Advanced Aeronautical Resin Matrix Composites[J]. Journal of Aeronautical Materials, 2016, 36(3): 92-100 (in Chinese) [Article] [Google Scholar]
  2. Zhang Peng, Sun Ronglei, Lian Haitao, et al. Bonding Mechanism of Ply During Automated Tape Laying Process[J]. Acta Materiae Compositae Sinica, 2014, 31(1): 40-48 (in Chinese) [Article] [Google Scholar]
  3. He X, Shi Y, Kang C, et al. Analysis and Control of the Compaction Force in the Composite Prepreg Tape Winding Process for Rocket Motor Nozzles[J]. Chinese Journal of Aeronautics 2016 36 2 836 845 [Google Scholar]
  4. Zhao P, Shirinzadeh B, Shi Y, et al. Improved Uniform Degree of Multi-layer Interlaminar Bonding Strength for Composite Laminate[J]. Journal of Reinforced Plastics & Composites, 2017, 36(17): 1211-1224 [Article] [CrossRef] [Google Scholar]
  5. Han Zhenyu, Li Yuehua, Fu Hongya, et al. Thermoplastic Composites Fiber Placement Process Research[J]. Journal of Materials Engineering 2012 2 91 96 (in Chinese) [Article] [Google Scholar]
  6. Shirinzadeh B, Cassidy G, Oetomo D, et al. Trajectory Generation for Open-Contoured Structures in Robotic Fiber Placement[J]. Robotics and Computer-Integrated Manufacturing, 2007, 23(4): 380-394 [Article] [CrossRef] [Google Scholar]
  7. Ma Xuqiang, Gu Yizhuo, Li Yanxia, et al. Interlaminar Properties of Carbon Fiber Composite Laminates with Resin Transfer Molding/Prepreg Co-Curing Process[J]. Journal of Reinforced Plastics and Composites, 2014, 33(24): 2228-2241 [Article] [CrossRef] [Google Scholar]
  8. Khan M A, Mitschang P, Schledjewski R. Identification of Some Optimal Parameters to Achieve Higher Laminate Quality through Tape Placement Process[J]. Advances in Polymer Technology, 2010, 29(2): 98-111 [Article] [CrossRef] [Google Scholar]
  9. Bendemra H, Vincent M J, Compston P. Optimisation of Compaction Force for Automated Fibre Placement[C]//Australasian Congress on Applied Mechanics, 2014: 957-965 [Google Scholar]
  10. Grouve W J B, Warnet L L, Rietman B, et al. Optimization of the Tape Placement Parameters for Carbon-PPS Composites[J]. Composites Part A:Applied Science and Manufacturing, 2013, 50: 44-53 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  11. Wen Qionghua, Wang Xianfeng, He Simin, et al. Influence of Temperature on Placement Effect of Prepreg[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(9): 1740-1745 (in Chinese) [Article] [Google Scholar]
  12. Duan Yugang, Liu Fenfen, Chen Yao, et al. Effects of Compaction Force and Heating Temperature of Prepreg on Composite Mechanical Properties during Fiber Placement Process[J]. Acta Materiae Compositae Sinica 2012 4 148 156 (in Chinese) [Article] [Google Scholar]
  13. Zhao P, Shirinzadeh B, Shi Y, et al. Multi-Pass Layup Process for Thermoplastic Composites Using Robotic Fiber Placement[J]. Robotics and Computer-Integrated Manufacturing, 2018, 49: 277-284 [Article] [CrossRef] [Google Scholar]
  14. Tierney J, Gillespie J. W. Modeling of Insitu Strength Development for the Thermoplastic Composite Tow Placement Process[J]. Journal of Composite Materials, 2006, 40(16): 1487-1506 [NASA ADS] [CrossRef] [Google Scholar]
  15. Schell J S U, Guilleminot J, Binetruy C, et al. Computational and Experimental Analysis of Fusion Bonding in Thermoplastic Composites:Influence of Process Parameters[J]. Journal of Materials Processing Technology, 2009, 209(11): 5211-5219 [Article] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.