Open Access
Volume 36, Number 4, August 2018
Page(s) 768 - 777
Published online 24 October 2018
  1. Ioannidid Y E, Christodoulakis S. On the Propagation of Errors in the Size of Join Results[J]. Acm Sigmod Record, 1991, 20(2): 268-277 [Article] [CrossRef] [Google Scholar]
  2. Melvin C, Chen C N. Adaptive Selectivity Estimation Using Query Feedback[J]. Acm sigmode Recordf, 1994, 23(2): 161-172 [Article] [CrossRef] [Google Scholar]
  3. Stillger M, Lohman G M, Markl V, et al. LEO-DB2's Learning Optimizer[C]//Proceedidngs of the 27th International Conference on Very Large Data Bases, 2001: 19-28 [Article] [Google Scholar]
  4. PostgreSQL. Postgresql 9. 6[EB/OL]. [2018-06-28]. [Google Scholar]
  5. Oracle. Oracle DataBase SQL Tuning Guide 12c Release 1[EB/OL]. [2013-06-26] [Google Scholar]
  6. Teradata. Teradata Performance Management[EB/OL]. [2005-01-01] [Google Scholar]
  7. Chakkappen S, Cruanes T, Dageville B, et al. Efficient and Scalable Statistics Gathering for Large Databases in Oracle 11g[C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data ACM, 2008: 1053-1064 [Article] [Google Scholar]
  8. Canonne C L. Are Few Bins Enough: Testing Histogram Distributions[C]//Proceedins of the 35th ACM Sigmod-Sigact-Sigai Symposium on Principles of Database Systems ACM, 2016: 455-463 [Article] [Google Scholar]
  9. Soliman M A, Antova L, Raghavan V, et al. Orca: A Modular Query Optimizer Architecture for Big Data[C]//Proceedings of the ACM Sigmod International Conference on Management of Data ACM, 2014: 337-348 [Article] [Google Scholar]
  10. Graefe Goetz. The Cascades Framework for Query Optimization[J]. Data Engineering Bulletin, 1995, 18(5): 19-29 [Article] [Google Scholar]
  11. Shankar S, Nehme R, Aguilar-Saborit J, et al. Query Optimization in Microsoft SQL Server PDW[C]//Proceedings of the 2012 ACM Sigmod International Conference on Management of Data ACM, 2012: 767-776 [Article] [Google Scholar]
  12. Elseidy M, Elguindy A, Vitorovic A, et al. Scalable and Adaptive Online Joins[J]. Proceedings of the VLDB Endowment, 2014, 7(6): 441-452 [Article] [CrossRef] [Google Scholar]
  13. Chen J, Jindel S, Walzer R, et al. The MemSQL Query Optimizer:A Modern Optimizer for Real-Time Analytics in a Distributed Database[J]. Proceedings of the VLDB Endowment, 2016, 9(13): 1401-1412 [Article] [CrossRef] [Google Scholar]
  14. Tian F, DeWitt D J. Tuple Routing Strategies for Distributed Eddies[C]//Proceedings of the 29th International Conference on Very Large Data Bases VLDB Endowment, 2003(29): 333-344 [Article] [Google Scholar]
  15. Zhou Y, Ooi B C, Tan K L. Dynamic Load Management for Distributed Continuous Query Systems[C]//Proceedings of the 21st International Conference on Data Engineering, 2005: 322-323 [Article] [Google Scholar]
  16. Yin S, Hameurlain A, Morvan F. Robust Query Optimization Methods with Respect to Estimation Errors:a Survey[J]. ACM Sigmod Record, 2015, 44(3): 25-36 [Article] [CrossRef] [Google Scholar]
  17. Ioannidis Y. The History of Histograms[C]//Proceedings of the 29th International Conference on Very Large Data Bases, VLDB Endowment, 2003(29): 19-30 [Article] [Google Scholar]
  18. Chaudhuri Surajit. An Overview of Query Optimization in Relational Systems[J]. Rods, 1998, 27(3): 34-43 [Article] [Google Scholar]
  19. Bouganim L, Florescu D, Valduriez P. Dynamic Load Balancing in Hierarchical Parallel Database Systems[C]//International Conference on Very Larghe Data Bases, 1996: 436-447 [Article] [Google Scholar]
  20. Das D, Yan J, Zait M, et al. Query Optimization in Oracle 12c Database In-Memory[J]. Proceedings of the VLDB Endowment, 2015, 8(12): 1770-1781 [Article] [CrossRef] [Google Scholar]
  21. Teimouri M, Rezakhah S, Mohammadpour A. U-Statistic for Multivariate Stable Distributions[J]. Journal of Probability and Statistics, 2017,(1): 1-12 [Article] [CrossRef] [Google Scholar]
  22. TaoBao. Oceanbase[EB/OL] [2012-09-04]. [Google Scholar]
  23. Yang Zhenkun. The Architecture of OceanBase Relational Database System[J]. Journal of East China Normal University, 2014, 2014(5): 141-148 (in Chinese) [Article] [Google Scholar]
  24. TPC. TPC-H. [2018-06-02] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.