Open Access
Volume 36, Number 5, October 2018
Page(s) 816 - 823
Published online 17 December 2018
  1. Tim C Lieuwen, Vigor Yang. Gas Turbine Emissions. Cambridge University Press, 2013 [CrossRef] [Google Scholar]
  2. Lefebvre A H, Ballal D R. Gas Turbine Combustion. Taylor & Francis Press, 1999 [Google Scholar]
  3. Michael J Foust, Doug Thomsen, Rick Stickles, et al. Development of the GE Aviation Low Emissions TAPS Combustor for Next Generation Aircraft Engines[C]//50th AIAA Aerospace Sciences Meeting, Nashville, Tennessee, 2012 [Article] [Google Scholar]
  4. Lee Chiming, Chang Clarence, Stephen Kramer, et al. NASA Project Develops Next Generation Low-Emissions Combustor Technologies[C]//51st AIAA Aerospace Sciences Meeting, Texas, 2013 [Article] [Google Scholar]
  5. Jin Rushan, Suo Jianqin. Advanced Gas Turbine Combustor[M]. Beijing, Aviation Industry Press, 2016 (in Chinese) [Google Scholar]
  6. Fu Y. Aerodynamics and Combustion of Axial Swirlers[D]. Cincinnati, University of Cincinnati, 2008 [Article] [Google Scholar]
  7. Dewanji D, Rao G, Pourquie M, et al. Investigation of Flow Characteristics in Lean Direct Injection Combustors[J]. Journal of Propulsion & Power, 2012, 28(1): 181-196 [Article] [CrossRef] [Google Scholar]
  8. Dewanji D, Rao G. Spray Combustion Modeling in Lean Direct Injection Combustors, Part Ⅰ:Single-Element LDI[J]. Combustion Science and Technology, 2015, 187(4): 537-557 [Article] [CrossRef] [Google Scholar]
  9. Dewanji D, Rao G. Spray Combustion Modeling in Lean Direct Injection Combustors, Part Ⅱ:Multi-Point LDI[J]. Combustion Science and Technology, 2015, 186(4): 558 [Article] [CrossRef] [Google Scholar]
  10. Villalva Gomez R. Structure, Stability and Emissions of Lean Direct Injection Combustion, including a Novel Multi-Point LDI System for NOx Reduction[D]. Delft, Delft University, 2013 [Article] [Google Scholar]
  11. Patel N, Klrtas M, Sankaran V, et al. Simulation of Spray Combustion in a Lean-Direct Injection Combustor[J]. Proceedings of the Combustion Institute, 2007, 31(2): 2327-2334 [Article] [CrossRef] [Google Scholar]
  12. Patel N, Menon S. Simulation of Spray-Turbulence-Flame Interactions in a Lean Direct Injection Combustor[J]. Combustion & Flame, 2008, 153(1/2): 228-257 [Article] [CrossRef] [Google Scholar]
  13. Heath C M. Characterization of Swirl-Venturi Lean Direct Injection Designs for Aviation Gas Turbine Combustion[J]. Journal of Propulsion & Power, 2014, 30(5): 1334-1356 [Article] [CrossRef] [Google Scholar]
  14. Heath C M. Parametric Modeling Investigation for Radially Staged Low-Emission Combustion[J]. Journal of Propulsion & Power, 2016, 32(2): 1-16 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  15. Wu Yaozeng, Huang Yong, Wang Fang, et al. Investigation of Cold Flow Field of A Multi-injection Combustor with Different geometries[J]. Journal of Aerospace Power, 2010, 25(7): 1536-1544 (in Chinese) [Article] [Google Scholar]
  16. Zhu Yu, Zhang Qun, Xu Huasheng, et al. Effects of Geometry on Characteristic of Central Toroidal Recirculation Zone Generated by an Axial Swirler[J]. Journal of Aerospace Power, 2014, 29(11): 2684-2693 (in Chinese) [Article] [Google Scholar]
  17. Zhang Chuan, Suo Jianqin, Jin Rushan. Technology Readiness Level Scale for Low Emission Combustor of Civil Aircraft[J]. Advances in Aeronautical Science and Engineering, 2010, 1(1): 85-89 (in Chinese) [Article] [Google Scholar]
  18. Hsiao G, Mongia H. Swirl Cup Modeling Part 3: Grid Independent Solution with Different Turbulence Models[C]//Aerospace Sciences Meeting and Exhibit, 2015 [Article] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.