Open Access
Issue
JNWPU
Volume 36, Number 5, October 2018
Page(s) 865 - 874
DOI https://doi.org/10.1051/jnwpu/20183650865
Published online 17 December 2018
  1. Zhang Shuai, Xia Ming, Qian Bowen. Evolution and Technical Factors Influencing Civil Aircraft Aerodynamic Configuration[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 30-44 (in Chinese) [Article] [Google Scholar]
  2. Park M A, Aftosmis M J, Campbell R L, et al. Summary of the 2008 NASA Fundamental Aeronautics Program Sonic Boom Prediction Workshop[J]. Journal of Aircraft, 2014, 51(3): 987-1001 [Article] [CrossRef] [Google Scholar]
  3. Park M A, Morgenstern John M. Summary and Statistical Analysis of the First AIAA Sonic Boom Prediction Workshop[J]. Journal of Aircraft, 2016, 53(2): 578-598 [Article] [CrossRef] [Google Scholar]
  4. Park M A, Marian N. Nearfield Summary and Statistical Analysis of the Second AIAA Sonic Boom Prediction Workshop[C]//35th AIAA Applied Aerodynamics Conference, Denver, Colorado, 2017 [Google Scholar]
  5. Rallabhandi S K, Loubeau A. Summary of Propagation Cases of the Second AIAA Sonic Boom Prediction Workshop[C]//35th AIAA Applied Aerodynamics Conference, Denver, Colorado, 2017 [Article] [Google Scholar]
  6. Whitham G B. The Flow Pattern of a Supersonic Projectile[J]. Communications on Pure and Applied Mathematics, 1952, 5(3): 301-348 [Article] [CrossRef] [Google Scholar]
  7. Hayes W D. Brief Review of the Basic Theory: Sonic Boom Research[R]. NASA SP-147, 1967 [Google Scholar]
  8. Rallabhandi S K. Advanced Sonic Boom Prediction Using the Augmented Burgers Equation[J]. Journal of Aircraft, 2011, 48(4): 1245-1253 [Article] [CrossRef] [Google Scholar]
  9. Cliff S E, Thomas S D. Euler/Experiment Correlations of Sonic Boom Pressure Signatures[J]. Journal of Aircraft, 1993, 30(5): 669-675 [Article] [CrossRef] [Google Scholar]
  10. Choi S, Alonso J J, Weide E V D. Numerical and Mesh Resolution Requirements for Accurate Sonic Boom Prediction[J]. Journal of Aircraft, 2009, 46(4): 1126-1139 [Article] [CrossRef] [Google Scholar]
  11. Carter M B, Deere K A. A Grid Sourcing and Adaptation Study Using Unstructured Grids for Supersonic Boom Prediction[C]//26th AIAA Applied Aerodynamics Conference, Honolulu, Hawaii, 2008 [Article] [Google Scholar]
  12. Campbell R L, Carter M B, Deere K A. Efficient Unstructured Grid Adaptation Methods for Sonic Boom Prediction[C]//26th AIAA Applied Aerodynamics Conference, Honolulu, Hawaii, 2008 [Article] [Google Scholar]
  13. Meredith K, Dahlin J, Graham D, et al. Computational Fluid Dynamics Comparison and Flight Test Measurement of F-5E Off-Body Pressures[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2005 [Article] [Google Scholar]
  14. Laflin K R, Klausmeyer S M, Chaffin M. A Hybrid Computational Fluid Dynamics Procedure for Sonic Boom Prediction[C]//24th Applied Aerodynamics Conference, San Francisco, California, 2006 [Article] [Google Scholar]
  15. Feng Xiaoqiang, Song Bifeng, Li Zhanke. Low Boom Inverse Design Method Based on Hybrid Grid[J]. Chinese Journal of Computational Mechanics, 2013, 30(5): 717-722 (in Chinese) [Article] [Google Scholar]
  16. Feng Xiaoqiang, Li Zhanke, Song Bifeng, et al. Optimization of Sonic Boom and Aerodynamic Based on Structured/Unstructured Hybrid Grid[J]. ACTA Aerodynamica Sinica, 2014, 32(1): 30-37 (in Chinese) [Article] [Google Scholar]
  17. Xu Yue, Song Wanqiang. Near Field Sonic Boom Calculation on Typical LSB Configuration[J]. Aeronautical Science & Technology, 2016, 27(7): 12-16 (in Chinese) [Article] [Google Scholar]
  18. Ma B P, Wang G, Ren J, et al. Near Field Sonic Boom Analysis with HUNS3D Solver[C]//55th AIAA Aerospace Sciences Meeting Grapevine, Texas, 2017 [Google Scholar]
  19. Wang Gang, Ma Boping, Lei Zhijin, et al. Simulation and Analysis for Sonic Boom Prediction on Several Typical Calculation Models[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1): 164-176 (in Chinese) [Article] [Google Scholar]
  20. Park M A, Campbell R L, Elmiligui A A, et al. Specialized CFD Grid Generation Methods for Near-Field Sonic Boom Prediction[C]//52nd Aerospace Sciences Meeting, National Harbor, Maryland, 2014 [Article] [Google Scholar]
  21. Wang G, Ye Z Y. Mixed Element Type Unstructured Grid Generation and its Application to Viscous Flow Simulation[C]//24th International Congress of Aeronautical Sciences, Yokohama, Japan, 2004 [Google Scholar]
  22. Spalart P, Allmaras S. A One-Equation Turbulence Model for Aerodynamic Flows[C]//30th Aerospace Sciences Meeting and Exhibit, Reno, 1992 [Article] [Google Scholar]
  23. Roe P L. Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes[J]. Journal of Computational Physics, 1981, 43(2): 357-72 [Article] [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  24. Liou M S. Ten Years in the Making-AUSM-Family[C]//15th AIAA Computational Fluid Dynamics Conference, Anaheim, 2013 [Article] [Google Scholar]
  25. lsmail Farzad, Philip L. Affordable, Entropy-Consistent Euler Flux Functions Ⅱ:Entropy Production at Shocks[J]. Journal of Computational Physics, 2009, 228(15): 5410-36 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  26. Jameson A, Schmidt W, Turkel E. Numerical Solution of The Euler Equations by Finite Volume Methods Using Runge Kutta Time Stepping Schemes[C]//14th Fluid and Plasma Dynamics Conference, Palo Alto, 1981 [Article] [Google Scholar]
  27. Venkatakrishnan V. Convergence to Steady State Solutions of the Euler Equations on Unstructured Grids with Limiters[J]. Journal of Computational Physics, 1995, 118(118): 120-130 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  28. Menter F R. Zonal Two Equation k-w Turbulence Models for Aerodynamic Flows[J]. AIAA Journal, 1993, 36(11): 1975-1982 [Article] [Google Scholar]
  29. Hunton L W, Hicks R M, Mendoza J P. Some Effects of Wing Planform on Sonic Boom[R]. NASA TN-D-7160, 1973 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.