Open Access
Volume 36, Number 5, October 2018
Page(s) 875 - 883
Published online 17 December 2018
  1. Xiang Jinwu, Yan Yongju, Li Daochun. Recent Advance in Nonlinear Aeroelastic Analysis and Control of the Aircraft[J]. Chinese Journal of Aeronautics, 2014, 27(1): 12-22 [Article] [CrossRef] [Google Scholar]
  2. Larsen J W, Nielsen S R K, Krenk S. Dynamic Stall Model for Wind Turbine Airfoils[J]. Journal of Fluids and Structures, 2007, 23(7): 959-982 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  3. Kou Jiaqing, Zhang Weiwei, Ye Zhengyin. Dynamic Nonlinear Aerodynamics Modeling Method Based on Layered Model[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(12): 3785-3797 (in Chinese) [Article] [Google Scholar]
  4. Ye Zhengyin, Zhang Weiwei, Shi Aiming, et al. Fundamentals of Fluid-Structure Coupling and Its Application[M]. Harbin, Harbin Institute of Technology Press, 2010: 226-227 (in Chinese) [Google Scholar]
  5. Peters D A, Karunamoorthy S, Cao W M. Finite State Induced Flow Models. Part Ⅰ:Two-Dimensional Thin Airfoil[J]. Journal of Aircraft, 1995, 32(2): 313-322 [Article] [CrossRef] [Google Scholar]
  6. Peters D A, Chouchane M. Effect of Dynamic Stall on Helicopter Trim and Flap-Lag Response[J]. Journal of Fluids and Structures, 1987, 1(3): 299-318 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  7. Mcalister K W, Lambert O, Petot D. Application of the ONERA Model of Dynamic Stall[R]. DTIC Document, 1984 [Google Scholar]
  8. Tang D M, Dowell E H. Comments on the ONERA Stall Aerodynamic Model and Its Impact on Aeroelastic Stability[J]. Journal of Fluids and Structures, 1996, 10: 353-366 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  9. Laxman V, Venkatesan C. Chaotic Response of an Airfoil due to Aeroelastic Coupling and Dynamic Stall[J]. AIAA Journal, 2007, 45(1): 271-280 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  10. Beedy J, Barakos G, Badcock K J, et al. Non-linear Analysis of Stall Flutter Based on the ONERA Aerodynamic Model[J]. Aeronautical Journal, 2003, 107(1074): 495-510 [Article] [Google Scholar]
  11. Liu Xiangning, Xiang Jinwu. Stall Flutter Analysis of High Aspect Ratio Composite Wing[J]. Chinese Journal of Aeronautics, 2006, 19(1): 36-43 [Article] [CrossRef] [Google Scholar]
  12. Liu Tingrui. Stall Flutter Suppression for Absolutely Divergent Motions of Wind Turbine Blade Base on H-Infinity Mixed-Sensitivity Synthesis Method[J]. Open Mechanical Engineering Journal, 2015, 9(1): 752-760 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  13. Ren Yongsheng, Liu Yanrui. Stall Nonlinear Flutter Behavior of a Thin-Walled Composite Beam with Structural Damping[J]. Journal of Vibration and Shock, 2013, 32(18): 146-152 (in Chinese) [Article] [Google Scholar]
  14. Sun Zhiwei, Haghighat Sohrab, Liu Hugh H T, et al. Time-Domain Modeling and Control of a Wing-Section Stall Flutter[J]. Journal of Sound and Vibration, 2015, 340: 221-238 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  15. Peters D A. Two-Dimensional Incompressible Unsteady Airfoil Theory-an Overview[J]. Journal of Fluids and Structures, 2008, 24(3): 295-312 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  16. Peters D A, Barwey D, Su A. An Integrated Airloads-Inflow Model for Use in Rotor Aeroelasticity and Control Analysis[J]. Mathematical & Computer Modelling An International Journal, 1994, 19(3/4): 109-123 [Article] [CrossRef] [Google Scholar]
  17. Sun Zhiwei. Investigation of the Problems in Multidisciplinary Design of High Altitude Long Endurance Unmanned Aerial Vehicle[D]. Xi’an, Northwestern Polytechnical University, 2016 (in Chinese) [Google Scholar]
  18. Zhang Jian, Xiang Jinwu. Nonlinear Aeroelastic Response of High-Aspect-Ratio Flexible Wings[J]. Chinese Journal of Aeronautics, 2009, 22: 355-363 [Article] [CrossRef] [Google Scholar]
  19. Li Nailu, Mu Anle, Balas M J. Aeroelastic Stability Analysis of the Rotating Stall Wind Turbine Blade Based on Floquet Theory[J]. Journal of Vibration and Shock, 2015, 34(24): 82-88 (in Chinese) [Article] [Google Scholar]
  20. Hodges D H, Pierce G A. Introduction to Structural Dynamics and Aeroelasticity, 2nd Edition, Cambridge, Cambridge University Press. [Google Scholar]
  21. Lee T, Gerontakos P. Investigation of Flow over an Oscillating Airfoil[J]. Journal of Fluid Mechanics, 2004, 512: 313-341 [Article] [NASA ADS] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.