Open Access
Volume 37, Number 1, February 2019
Page(s) 70 - 79
Published online 03 April 2019
  1. Jiang Bo, Cai Xiaolong. Matlab-Based Mobile Least Squares Data Fitting[J]. Mathematical Technology and Applications, 2015(10): 110-111 (in Chinese) [Article] [Google Scholar]
  2. Wu Junchao, Deng Junjun, Wang Jiarui. Galerkin-Type Meshless Numerical Integration Method[J]. Chinese Journal of Solid Mechanics, 2016, 37(3): 208-233 (in Chinese) [Article] [Google Scholar]
  3. Ding Rui, Zhu Zhengcheng. The EFG Method and Its Convergence Analysis for a Class of Time-Order Second-Order Variational Inequalities[J]. Chinese Journal of Applied Mathematics, 2015, 38(5): 874-891 (in Chinese) [Article] [Google Scholar]
  4. Lucy L B. A Numerical Approach to the Testing of the Fission Hypothesis[J]. The Astronomical Journal, 1977, 82(12): 1013-1024 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  5. Johnson G R, Beissel S R. Normalized Smoothing Functions for Sph Impact Computations[J]. International Journal for Numerical Methods in Engineering, 1996, 39: 2725-2741 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  6. Lancaster P, Salkauskas K. Surfaces Generated by Moving Least Squares Methods[J]. Mathematics of Computation, 1981, 37: 141-158 [Article] [Google Scholar]
  7. Pita C M, Felicelli S D. Applications of the Immersed Element-Free Galerkin Method[J]. Mecnica Computacional, 2008(8): 541-561 [Google Scholar]
  8. Yang Jianjun, Zheng Jianlong. The Meshless Local Strong and Weak Method Solves the Irregular Domain Problem[J]. Chinese Journal of Mechanics, 2017, 49(3): 659-666 (in Chinese) [Article] [Google Scholar]
  9. Shedbale A S, Singh I V. Ductile Failure Modeling and Simulations Using Coupled Fe-EFG Approach[J]. International Journal of Fracture, 2016, 203(1/2): 183-209 [Article] [CrossRef] [Google Scholar]
  10. Zhang Fei, Zhang Guoda, Ren Hongping. The Influence of the Order of Basis Functions on the Accuracy of the Elementless Galerkin Method[J]. Journal of Southwest University for Nationalities, 2017, 43(2): 177-185 (in Chinese) [Article] [Google Scholar]
  11. Yi Ruoyu. Efg Numerical Simulation of Two-Dimensional N-S Equations and Its Application[D]. Xiangtan, Xiangtan University, 2016 (in Chinese) [Google Scholar]
  12. Ouyang Bang, Gong Shuguang. Numerical Method for Two-Dimensional Incompressible Laminar Flow Problem with EFG Method[D]. Xiangtan, Xiangtan University, 2016 (in Chinese) [Google Scholar]
  13. Michael Hillman, Chen Jiunshyan. An Accelerated, Convergent, and Stable Nodal Integration in Galerkin Meshfree Methods for Linear and Nonlinear Mechanics[J]. International Journal for Numerical Methods in Engineering, 2016, 107: 603-630 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  14. Qin Xia, Zeng Zhiping, Peng Linxin. Free Mesh Vibration Analysis of Rectangular Ribbed Plates on Elastic Foundations[J]. Chinese Journal of Applied Mechanics, 2017, 34(6): 1027-1033 (in Chinese) [Article] [Google Scholar]
  15. Li Xiaolin. A Meshless Interpolating Galerkin Boundary Node Method for Stokes Flows[J]. Engineering Analysis with Boundary Elements, 2015, 51: 112-122 [Article] [CrossRef] [Google Scholar]
  16. Fayssal B, Halassi A, Driss O, et al. A Stabilized Meshless Method for Time-Dependent Convection-Dominated Flow Problems[J]. Mathematics and Computers in Simulation, 2017, 137: 159-176 (in Chinese) [Article] [CrossRef] [Google Scholar]
  17. Chen Cang, Yang Shuyi. Application of Meshless Method in Impact Dynamics[J]. Journal of Hunan University, 2017, 32(1): 30-36 (in Chinese) [Article] [NASA ADS] [Google Scholar]
  18. Cheng Yumin. Meshless Method[M]. Beijing, Science Press, 2015 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.