Open Access
Volume 37, Number 3, June 2019
Page(s) 449 - 456
Published online 20 September 2019
  1. XuChunxiao. Coherent Structures and Drag-Reduction Mechanism in Wall Tarbulance[J]. Advanves in Mechanics, 2015, 45: 111-140 [Article] [Google Scholar]
  2. Gad-El-HakM. Flow Control:Passive, Active, and Reactive Flow Management[M]. UK, Cambridge University Press, 2000 [CrossRef] [Google Scholar]
  3. AndersonJ D. Hypersonic and High-Temperature Gas Dynamics[M]. New York, McGraw-Hill Book Company, 2006 [CrossRef] [Google Scholar]
  4. Mitani T, Tomioka S, Kanda T, Chinzei N, et al. Scramjet Performance Achieved in Engine Tests from M4 to M8 Flight Conditions[R]. AIAA-2003-7009 [Google Scholar]
  5. Kirchhartz R M, Mee D J, Stalker R J. Skin Friction Drag with Boundary Layer Combustion in a Circular Combustor[R]. AIAA-2008-2589 [Google Scholar]
  6. Brittany R K, Anne M S, Russell V W, et al. A New Skin Friction Gauge[R]. AIAA-2016-4031 [Google Scholar]
  7. TairaT, SadatakeT, HiroyukiY. Accuracy of Direct Skin-Friction Measurements in High-Enthalpy Supersonic Flows[J]. AIAA Journal, 2011, 49(6): 1267-1271 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  8. JamesE B, VincentW, MichaelK S. Hypersonic Turbulent Boundary-Layer Fuel Injection and Combustion:Skin-Friction Reduction Mechanisms[J]. AIAA Journal, 2013, 51(9): 2147-2157 [Article] [CrossRef] [Google Scholar]
  9. Giorgio-SerchiF, WeymouthG D. Drag Cancellation by Added-Mass Pumping[J]. Journal of Fluid Mech, 2016, 798:1-11 [Article] [CrossRef] [Google Scholar]
  10. KornilovV I, BoikoA V. Advances and Challenges in Periodic Forcing of the Turbulent Boundary Layer on a Body of Revolution[J]. Progress in Aerospace Sciences, 2018, 98: 57-73 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  11. AmirrezaR, RayhanehA. The Common Mechanism of Turbulent Skin-Friction Drag Reduction with Superhydrophobic Longitudinal Microgrooves and Riblets[J]. Journal of Fluid Mech, 2018, 838: 68-104 [Article] [CrossRef] [Google Scholar]
  12. YangHongwei, GaoGe. Experimental Study for Turbulent Drag Reduction Using a Novel Boundary Control Technique[J]. Acta Aeronautica et Astronautica Sinica, 1997, 18(4): 455-457 (in Chinese) [Article] [Google Scholar]
  13. StalkerR J. Control of Hypersonic Turbulent Skin Friction by Boundary-Layer Combustion of Hydrogen[J]. Journal of Spacecraft and Rockets, 2005, 42(4): 577-587 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  14. Chan W Y K, Mee D J, Smart M K, et al. Boundary Layer Combustion for Viscous Drag Reduction in Practical Scramjet Configurations[C]//27th International Congress of the Aeronautical Sciences, 2010 [Google Scholar]
  15. Clark R J, Bade Shrestha S O. Boundary Layer Combustion for Skin Friction Drag Reduction in Scramjet Combustors[R]. AIAA-2014-3667 [Google Scholar]
  16. WangS, HeG Q, YanD K, et al. Analysis and Reduction of Skin-Friction in a Rocket-Based Combined-Cycle Engine Flow Path Operating from Mach 1.5 to 6.0[J]. Acta Astronautica, 2018, 151: 357-367 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  17. MenterF R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications[J]. AIAA Journal, 1994, 32(8): 1598-1605 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  18. WilcoxD C. Turbulence Modeling for CFD[M]. DCW Industries, La Canada, CA, 1994 [Google Scholar]
  19. Wang S, He G Q, Qin F, et al. Numerical Investigation of Skin-Friction Reduction in a Supersonic Channel[R]. AIAA-2017-2324 [Google Scholar]
  20. PudseyA S, WheatleyV, BoyceR R. Supersonic Boundary-Layer Combustion via Multiporthole Injector Arrays[J]. AIAA Journal, 2015, 53(10): 2089-2906 [Article] [Google Scholar]
  21. Ueda S, Takegoshi M, Kouchi T, et al. Evaluation of Heat Flux on Scramjet Engine Wall in Mach 6 Flight Condition[C]//55th International Astronautical Congress, 2006 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.