Open Access
Issue |
JNWPU
Volume 37, Number 3, June 2019
|
|
---|---|---|
Page(s) | 558 - 564 | |
DOI | https://doi.org/10.1051/jnwpu/20193730558 | |
Published online | 20 September 2019 |
- AdjeiM T, NobleS M, NobleC H. The influence of C2C Communications in Online Brand Communities on Customer Purchase Behavior[J]. Journal of the Academy of Marketing Science, 2010, 38(5): 634-653 [Article] [CrossRef] [Google Scholar]
- PangB, LeeL. Opinion Mining and Sentiment Analysis[J]. Foundations and Trends in Information Retrieval, 2008, 2(1/2): 1-135 [Article] [CrossRef] [Google Scholar]
- Ganu G, Noémie Elhadad, Amélie Marian. Beyond the Stars: Improving Rating Predictions Using Review Text Content[C]//Proceedings of International Workshop on the Web and Databases, 2009: 1-6 [Google Scholar]
- LiuB. Opinion Mining and Sentiment Analysis[J]. Synthesis Lectures on Human Language Technologies, 2011, 2(2): 459-526 [Article] [Google Scholar]
- Pontiki M, Galanis D, Pavlopoulos J, et al. SemEval-2014 Task 4: Aspect Based Sentiment Analysis[C]//Proceedings of International Workshop on Semantic Evaluation, 2014: 27-35 [Google Scholar]
- Kiritchenko S, Zhu X, Cherry C, et al. NRC-Canada-2014: Detecting Aspects and Sentiment in Customer Reviews[C]//International Workshop on Semantic Evaluation, 2014: 437-442 [Google Scholar]
- Brychcin T, Konkol M, Steinberger J. UWB: Machine Learning Approach to Aspect-Based Sentiment Analysis[C]//International Workshop on Semantic Evaluation, 2014: 817-822 [Google Scholar]
- Hercig T, Brychcin T. UWB At SemEval-2016 Task 5: Aspect Based Sentiment Analysis[C]//International Workshop on Semantic Evaluation, 2016: 342-349 [Google Scholar]
- Ruder S, Ghaffari P, Breslin J G. INSIGHT-1 at SemEval-2016 Task 5: Deep Learning for Multilingual Aspect-Based Sentiment Analysis[C]//International Workshop on Semantic Evaluation, 2016: 330-336 [Google Scholar]
- SchoutenK, OnneV D W, FrasincarF, et al. Supervised and Unsupervised Aspect Category Detection for Sentiment Analysis with Co-Occurrence Data[J]. IEEE Trans on Cybernetics, 2018, 48(4): 1263-1275 [Article] [CrossRef] [Google Scholar]
- Mnih V, Heess N, Graves A, et al. Recurrent Models of Visual Attention[C]//Advances in Neural Information Processing Systems, 2014: 2204-2212 [Google Scholar]
- Wang Y, Huang M, Zhu X, et al. Attention-Based LSTM for Aspect-level Sentiment Classification[C]//Conference on Empirical Methods in Natural Language Processing, 2016: 606-615 [Google Scholar]
- Mikolov T, Chen K, Corrado G, et al. Efficient Estimation of Word Representations in Vector Space[C]//Interrational Conference on Learning Representations, 2013: 1-12 [Google Scholar]
- ChenLong, GuanZiyu, HeJinghong, et al. A Survey on Sentiment Classification[J]. Journal of Computer Research and Development, 2017, 54(6): 1150-1170 [Article] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.