Open Access
Volume 37, Number 3, June 2019
Page(s) 601 - 611
Published online 20 September 2019
  1. LiWenhao, ZhangHeng. Reviews on Unmanned Aerial Vehicle from ation-Flight[J]. Flight Dynamics, 2007, 25(1): 9-11 [Article] [Google Scholar]
  2. PanHua, MaoHaitao. Study on Problems Facing with UAV Formation Flight and Its Key Technology[J]. Modern Electronics Technique, 2014, 37(16): 77-79 [Article] [Google Scholar]
  3. ZongQun, WanDandan, ShaoShikai, et al. Research Status and Development of Multi UAV Coordinated Formation Flight Control[J]. Journal of Harbin Institute of Technology, 2017, 49(3): 1-14 [Article] [Google Scholar]
  4. MasoudA A. Kinodynamic Motion Planning[J]. Robotics and Automation, 2010, 17(1): 85-99 [Article] [CrossRef] [Google Scholar]
  5. KimS H, BhattacharyaR. Motion Planning in Obstacle Rich Environments[J]. Journal of Aerospace Computing, Information, and Communication, 2009, (6): 433-450 [Article] [Google Scholar]
  6. Li Yue, Chen Qingyang, Hou Zhongxi. Research on UAVs Formation Reconfiguration Based on Dubins Path[C]//Proceedings of 2016 IEEE Chinese Guidance, Navigation and Control Conference, 2016: 2745-2750 [Google Scholar]
  7. Humi M A, Sekhava P, Ross I M. Autonomous Path Planning Using Real-time Inforrnation Updates[C]//AIAA Guidance, Navigation and Control Conference and Exhibit, 2007 [Google Scholar]
  8. Lavalle S M. Rapidly-Exploring Random Trees: a New Tool for Path Planning[D]. Ames, Iowa State University, 1998 [Google Scholar]
  9. YinGaoyang, ZhouShaolei, WuQingpo. Efficient Path Planning Algorithm in Three Dimensions for UAV[J]. Journal of Northwestern Polytechnical University, 2016, 34(4): 563-569 10.3969/j.issn.1000-2758.2016.04.003[Article] [Google Scholar]
  10. LinNa, ZhangYalun. Research and Simulation on Adaptive RRT Algorithm for UAVs Path Planning[J]. Computer Simulation, 2015, 32(1): 73-77 [Article] [Google Scholar]
  11. Bares P, Lazarusy S, Tsourdosz A, et al. Adaptive Guidance for UAV Based on Dubins Path[C]//AIAA Guidance, Navigation, and Control Conference, 2013 [Article] [Google Scholar]
  12. Lee H, Lee D, Shim D H. Receding Horizon-Based RRT Algorithm for a UAV Realtime[C]//AIAA Sci Tech Forum Grapevine, 2017 [Google Scholar]
  13. SunC C, LiuY C, DaiR. Two Approaches for Path Planning of Unmanned Aerial Vehicles with Avoidance Zones[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(8): 2076-2083 [Article] [CrossRef] [Google Scholar]
  14. Farinell J, Lay C, Bhandari S. UAV Collision Avoidance Using a Predictive Rapidly-Exploring Random Tree[C]//AIAA Sci Tech Forum Grapevine, 2016 [Article] [Google Scholar]
  15. Tian Xiaoliang. Study on Unmanned Aerial Vehicle path planning[D]. Xi'an, Xidian University, 2014: 46-53 (in Chinese) [Google Scholar]
  16. Ou Chaojie. UAVs Formation Flight Control[D]. Nanjing, Nanjing University of Aeronautics and Astronautics, 2015: 20-21 (in Chinese) [Google Scholar]
  17. Li Meng. Research on UAV Mission Planning Methods Based on Intelligent Optimization and RRT Algorithm[D]. Nanjing, Nanjing University of Aeronautics and Astronautics, 2012: 63-87 (in Chinese) [Google Scholar]
  18. Cardenas I L, Flores G, Salaza S. Dubins Path Generation for a Fixed Wing UAV[C]//Proceedings of 2014 International Conference on Unmanned Aircraft Systems, Orlando, 2014: 339-346 [Google Scholar]
  19. LiYue, ChenQingyang, HouZhongxi. Path Following Method with Adaptive Guidance Length for Unmanned Aerial Vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(7): 1481-1489 [Article] [Google Scholar]
  20. SunXiaolei, MengYulin, QiNaiming, et al. Cooperative Path Planning for Rendezvous of Unmanned Aerial Vehicles[J]. Robot, 2015, 37(5): 621-627 [Article] [Google Scholar]
  21. Mccourt M J, Ton C T, Mehta S S, et al. Adaptive Step-Length RRT Algorithm for Improved Coverage[C]//AIAA Guidance, Navigation, and Control Conference, 2016 [Article] [Google Scholar]
  22. PattersonM A, RaoA V. GPOPS-II:A MATLAB Software for Solving Multiple-Phase Optimal Control Problems Using Hp-Adptive Gaussian Quadrature Collocation Methods and Sparse Nonlinear Programming ACM Transactions on Mathematical Software 2014 41 1 1 37 [Article] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.