Open Access
Volume 37, Number 3, June 2019
Page(s) 628 - 635
Published online 20 September 2019
  1. ZhangDongliang, MoRong, SunHuibin, et al. Tool Wear Condition Monitoring Based on Manifold Learning and Hidden Markov Model[J]. Journal of Northwestern Polytechnical University, 2015, 33(4): 651-657 10.3969/j.issn.1000-2758.2015.04.022[Article] [Google Scholar]
  2. WuQiaoping, LiuPing, DenuZhaohui, et al. Drilling Performance of Ultraline Cemented Carbide Drill in Machining Aramid Fiber Reinforced Polymer Composites[J]. Acta Materiae Compositae Sinica, 2017, 34(10): 2246-2253 (in Chinese) [Article] [Google Scholar]
  3. GaoYang, YanMingyuan, LuoBinghui. Effects of NbC Additions on the Microstructure and Properties of Non-Uniform Structure WC-Co Cemented Carbides[J]. Materials Science and Engineering, 2017, 287: 259-268 [Article] [Google Scholar]
  4. DongWeiwei, ZhuShigen, BaiTao. Influence of Al2O3 Whisker Concentration on Mechanical Properties of WC-Al2O3 Whisker Composite[J]. Ceramics International, 2015, 41(10): 13685-13691 [Article] [CrossRef] [Google Scholar]
  5. GaoJiaojiao, SongJinpeng, WangJinlong, et al. Effects of Short-Cut Carbon Fiber Content on Microstructure and Mechanical Properties of WC-Based Composite Ceramic Cutting Tool Materials[J]. Hot Working Technology, 2017, 46(16): 108-111 [Article] [Google Scholar]
  6. ZhengDonghai, LiXiaoqiang, LiYuanyuan. Zirconia-Toughened WC with/without VC and Cr3C2[J]. Ceramics International, 2014, 40(1): 2011-2016 [Article] [CrossRef] [Google Scholar]
  7. LeiYiwen, SunJing, DuXiwen, et al. Properties and Microstructure of VC/Cr3C2-Doped WC/Co Cemented Carbides[J]. Rare Metals, 2007, 26(6): 584-590 [Article] [CrossRef] [Google Scholar]
  8. SuWei, SunYexi, YangHailin. Effects of TaC on Microstructure and Mechanical Properties of Coarse Grained WC-9Co Cemented Carbides[J]. Trans of Nonferrous Metals Society of China, 2015, 25(4): 1194-1199 [Article] [CrossRef] [Google Scholar]
  9. NinoA, YumaI, TakashiS. Effects of ZrC and SiC Addition on the Microstructures and Mechanical Properties of Binderless WC[J]. International Journal of Refractory Metals and Hard Materials, 2017, 69: 259-265 [Article] [CrossRef] [Google Scholar]
  10. SiwakP, GarbiecD. Microstructure and Mechanical Properties of WC-Co, WC-Co-Cr3C2 and WC-Co-TaC Cermets Fabricated by Spark Plasma Sintering[J]. Trans of Nonferrous Metals Society of China, 2016, 26(10): 2641-2646 [Article] [CrossRef] [Google Scholar]
  11. GaoJiaojiao, JiangLongkai, SongJinpeng, et al. Effects of TiC Content on Microstructure and Mechanical Properties of WC-TiC-TaC Cemented Carbide Materials[J]. Journal of Inorganic Materials, 2017, 32(8): 891-896 [Article] [CrossRef] [Google Scholar]
  12. HanXiaowei, XiaXiaoqun. Influence of VC Content on Properties of WC-12%Co Cemented Carbide[J]. Equipment Manufacturing Technology, 2017, (1): 106-108 [Article] [Google Scholar]
  13. ZhengHuchun, FanJinglian, YangWenhua, et al. Effects of VC/Cr3C2 and the Amount of Carbon on Microstructure and Properties of WC-0.5Co Ultra-Fine Cemented Carbide[J]. Rare Metal Materials and Engineering, 2015, 44(4): 912-917 [Article] [Google Scholar]
  14. ZhouWei, XiongJi, WanWeicai. The Effect of NbC on Mechanical Properties and Fracture Behavior of WC-10Co Cemented Carbides[J]. International Journal of Refractory Metals and Hard Materials, 2015, 50: 72-78 [Article] [CrossRef] [Google Scholar]
  15. LudovicC, MarianneB P, SansJ L. Effect of High Temperature Oxidation on the Radiative Properties of HfC-Based Ceramics[J]. Corrosion Science, 2017, 126: 55-264 [Article] [CrossRef] [Google Scholar]
  16. GaoJie, HongJun, ZhengHeike, et al. Design and Synthesis of Diffusion-Modified HfC/HfC-SiC Bilayer System onto WC-Co Substrate for Adherent Diamond Deposition[J]. Journal of Alloys and Compounds, 2017, 705: 376-383 [Article] [CrossRef] [Google Scholar]
  17. WangShouren, WangGaoqi, YangXuefeng, et al. Evaluation of Thermal Shock Resistance of BNNTs/Si3N4 Composites Based on the Second Heat Shock Factor[J]. Acta Materiae Compositae Sinica, 2017, 34(7): 1575-1581 [Article] [Google Scholar]
  18. XieD A. HILLS, Quasibrittle Fracture Beneath a Flat Bearing Surface[J]. Engineering Fracture Mechanics, 2008, 75: 1223-1230 [Article] [CrossRef] [Google Scholar]
  19. ZhuYouli, HouShuai, WangYanli, et al. Improvement of Crack Propagation Algorithm Based on Maximum Energy Release Rate Principle[J]. Chinese Journal of Mechanical Engineering, 2016, 52(10): 91-96 [Article] [Google Scholar]
  20. YinZhiping, GuoJin, HuangQiqing. Analyzing Crack Turn of Wing-Beam Integrated Structure Based on Anisotropic Mechanical Properties of Aluminum Alloy[J]. Journal of Northwestern Polytechnical University, 2012, 30(2): 160-164 10.3969/j.issn.1000-2758.2012.02.002 [Article] [Google Scholar]
  21. TorresY, TarragoJ M, CoureauxD. Fracture and Fatigue of Rock Bit Cemented Carbides:Mechanics and Mechanisms of Crack Growth Resistance under Monotonic and Cyclic Loading[J]. International Journal of Refractory Metals and Hard Materials, 2014, 45: 179-188 [Article] [CrossRef] [Google Scholar]
  22. LiTao, LiQingfa, FuhJ Y H. Effects of AGG on Fracture Toughness of Tungsten Carbide[J]. Materials Science and Engineering, 2007, 445/446: 587-592 [Article] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.