Open Access
Issue
JNWPU
Volume 37, Number 5, October 2019
Page(s) 968 - 976
DOI https://doi.org/10.1051/jnwpu/20193750968
Published online 14 January 2020
  1. LIU Qiuhong, QIN Mengyang, MAO Yijun, et al. A Review on the Propagation of Non-Compact Aerodynamic Sound[J]. Acta Aerodynamica Sinica, 2018, 36(3): 440–448 (in Chinese)[Article] (in Chinese) [Google Scholar]
  2. WANG Z J. A Perspective on High-Order Methods in Computational Fluid Dynamics[J]. Science China Physics Mechanics & Astronomy, 2016, 59(1): 614701–614701 [Article] [CrossRef] [Google Scholar]
  3. LI W, PAN J, REN Y X. The Discontinuous Galerkin Spectral Element Methods for Compressible Flows on Two-Dimensional Mixed Grids[J]. Journal of Computational Physics, 2018, 364314–346 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  4. MA Mingsheng, GONG Xiaoquan, DENG Youqi, et al. An Implicit LU-SGS Scheme for the Discontinuous Galerkin Method on Unstructured Grids[J]. Journal of Northwestern Polytechnical University, 2016, 34(5): 754–760 [Article] [Article] (in Chinese) [Google Scholar]
  5. Witherden F D, Vermeire B C, Vincent P E. Heterogeneous Computing on Mixed Unstructured Grids with PyFR[J]. Computers & Fluids, 2015, 120173–186 [Article] [CrossRef] [Google Scholar]
  6. LIU Y, VINOKUR M, WANG Z J. Spectral Difference Method for Unstructured GridsⅠ:Basic Formulation[J]. Journal of Computational Physics, 2006, 216(2): 780–801 [Article] [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  7. SUN Y, WANG Z J, LIU Y. High-Order Multidomain Spectral Difference Method for the Navier-Stokes Equations[J]. Communications in Computational Physics, 2007, 2(2): 310–333 [Article] [Google Scholar]
  8. BALAN A, MAY G, SCHÖBERL J. A Stable High-Order Spectral Difference Method for Hyperbolic Conservation Laws on Triangular Elements[J]. Journal of Computational Physics, 2012, 231(5): 2359–2375 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  9. XIE L, XU M, ZHANG B, et al. A New Spectral Difference Method Using Hierarchical Polynomial Bases for Hyperbolic Conservation Laws[J]. Journal of Computational Physics, 2015, 284(C434–461 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  10. YU M, WANG Z J, LIU Y. On the Accuracy and Efficiency of Discontinuous Galerkin, Spectral Difference and Correction Procedure via Reconstruction Methods[J]. Journal of Computational Physics, 2014, 25970–95 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  11. LIANG C, JAMESON A, WANG Z J. Spectral Difference Method for Compressible Flow on Unstructured Grids with Mixed Elements[J]. Journal of Computational Physics, 2009, 228(8): 2847–2858 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  12. RUSANOV V V. Calculation of Interaction of Non-Steady Shock Waves with Obstacles[J]. Journal of Computational Math Physics USSR, 1961, 1261–279 [Google Scholar]
  13. XIE Liang. Research of High Order Numerical Methods in Computational Fluid Dynamics[D]. Xi'an, Northwestern Polytechnical University, 2016 (in Chinese) [Google Scholar]
  14. Ruuth S. Global Optimization of Explicit Strong-Stability-Preserving Runge-Kutta Methods[J]. Mathematics of Computation, 2006, 75(253): 183–207 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  15. TANEDA S. Experimental Investigation of the Wake Behind a Sphere at Low Reynolds Numbers[J]. Journal of the Physical Society of Japan, 1956, 11(10): 1104–1108 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  16. ZHANG L, LIU W, LI M, et al. A Class of DG/FV Hybrid Schemes for Conservation Law Ⅳ:2D Viscous Flows and Implicit Algorithm for Steady Cases[J]. Computers & Fluids, 2014, 97(6): 110–125 [Article] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.