Open Access
Volume 37, Number 6, December 2019
Page(s) 1111 - 1119
Published online 11 February 2020
  1. Hu Haiyan. Key Technologies of Solar Sail Spacecraft[J]. Journal of Deep Space4 Exploration, 2016, 3(4): 334–344 [Article] (in Chinese) [Google Scholar]
  2. Ma Dingkun, Kuang Yin, Yang Xinquan. Development Actual State and Trends of Nano-Satellite[J]. Space Electronic Technology, 2017, 14(3): 42–45 [Article] (in Chinese) [Google Scholar]
  3. Whorton M, Heaton A, Pinson R, et al. NanoSail-D: the First Flight Demonstration of Solar Sails for Nanosatellites[J/OL](2008-08-11)[2019-11-28]. [Google Scholar]
  4. Alhorn D C, Casas J P, Agasid E F, et al. Nanosail-D: The Small Satellite That Could![J/OL](2011-01-22)[2019-11-28]. [Google Scholar]
  5. Ridenoure R W, Spencer D A, Stetson D A, et al. Status of the Dual CubeSat LightSail Program[C]//AIAA SPACE 2015 Conference and Exposition, California, 2015: 4424 [Google Scholar]
  6. Ridenoure R, Munakata R, Diaz A, et al. LightSail Program Status: One Down, One to Go[J/OL](2015-07-31)[2019-11-28]. [Google Scholar]
  7. Liang Ke, Zhu Zhanxia. Optimal Design and SDimulation of Long-Range Orbital Rendezvous Based on Direct Collocation Method[J]. Journal of System Simulation, 2012, 22(3): 682–690 [Article] (in Chinese) [Google Scholar]
  8. Shen Hongxin, Li Hengnian. Indirect Optimization of Low-Thrust Multi-Revoloution Orbit Transfers for Geostationary-Orbit Satellites[J]. Journal of Astronautics, 2017, 38(10): 1041–1047 [Article] (in Chinese) [Google Scholar]
  9. Shang Haibin, Cui Pingyuan, Luan Enjie. Guidance Scheme for Near-Earth Low-Thrust Orbit Transfers Using Blended Locally Optimal Laws[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(6): 1419–1427 [Article] (in Chinese) [Google Scholar]
  10. Yuichi Tsuda, Osamu Mori, Ryu Funase, et al. Achievement of IKAROS-Japanese Deep Space Solar Sail Demonstration Mission[J]. Acta Astronautica, 2013, 82: 183–188 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  11. Walker M J H. A Set of Modified Equinoctial Orbit Elements[J]. Celestial Mechanics, 1986, 38(4): 391–392 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  12. Zhang Renwei. Satellite Orbit Attitude Dynamics and Control[M]. Beijing, Beihang University Press, 1998 (in Chinese) [Google Scholar]
  13. Gong Shengping, Li Junfeng. Dynamics and Control of Solar Sail Spacecraft[M]. Beijing, Tsinghua University Press, 2015 (in Chinese) [Google Scholar]
  14. Folkner W M, Williams J G, Boggs D H, et al. The Planetary and Lunar Ephemerides DE430 and DE431[J]. Interplanetary Network Progress Report, 2014, 196: 1–81 [Article] [Google Scholar]
  15. Coverstone V L, Prussing J E. Technique for Escape from Geosynchronous Transfer Orbit Using a Solar Sail[J]. Journal of Guidance Control & Dynamics, 2003, 26(4): 628–634 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  16. Huang Fuming, Yang Xiaoqin, Tan Wei. Design and Control of Solar Synchronous Orbit[M]. Beijing, National Defence Industrial Press, 2015 (in Chinese) [Google Scholar]
  17. Xi Xiaoning, Wang Wei. Fundamentals of Near-Earth Spacecraft Orbit[M]. Changsha, National University of Defence Technology Press, 2003 (in Chinese) [Google Scholar]
  18. Chen Luojing, Wang Mo, Lyu Qiujie, et al. Recent Progress on Solar Sail Membrane Materials and Deployment Technology[J]. Space Electronic Technology, 2015(3): 18–26 [Article] (in Chinese) [Google Scholar]
  19. Liu Biao, Ji Mian, Yang Shiyong. Recent Progress on Solar Sail Materials[J]. Aerospace Materials & Technology, 2013, 43(4): 24–28 [Article] (in Chinese) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.