Open Access
Issue
JNWPU
Volume 38, Number 1, February 2020
Page(s) 216 - 224
DOI https://doi.org/10.1051/jnwpu/20203810216
Published online 12 May 2020
  1. Li L, Zhang S, Wu J. An Efficient Hardware Architecture for Activation Function in Deep Learning Processor[C]//IEEE International Conference on Image, Vision and Computing, 2018: 911–918 [Google Scholar]
  2. Lecun Y, Bottou L, Bengio Y, et al. Gradient-Based Learning Applied to Document Recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324 [Article] [CrossRef] [Google Scholar]
  3. Krizhevsky A, Sutskever I, Hinton G E. Image Net Classification with Deep Convolutional Neural Networks[C]//International Conference on Neural Information Processing Systems, 2012: 1097–1105 [Article] [Google Scholar]
  4. Liu W, Anguelov D, Erhan D, et al. SSD: Single Shot MultiBox Detector[C]//European Conference on Computer Vision, 2016: 21–37 [Article] [Google Scholar]
  5. Howard A G, Zhu M, Chen B, et al. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications[EB/OL].(2017-04-17)[2019-01-02]. [Article] [Google Scholar]
  6. Hennessy J L, Patterson D A. Computer Architecture:a Quantitative Approach[M]. 6th Edition. Cambridge:Morgan Kaufmann Publishers Inc, 2018 [Google Scholar]
  7. Farabet C, Martini B, Corda B, et al. NeuFlow: a Runtime Reconfigurable Dataflow Processor for Vision[C]//Computer Vision and Pattern Recognition Workshops, 2011: 109–116 [Article] [Google Scholar]
  8. Peemen M, Setio A A A, Mesman B, et al. Memory-Centric Accelerator Design for Convolutional Neural Networks[C]//IEEE International Conference on Computer Design, 2013: 13–19 [Article] [Google Scholar]
  9. Chen T, Du Z, Sun N, et al. DianNao:a Small-Footprint High-Throughput Accelerator for Ubiquitous Machine-Learning[J]. Acm Sigplan Notices, 2014, 49(4): 269–284 [Article] [CrossRef] [Google Scholar]
  10. Du Z, Fasthuber R, Chen T, et al. Shidiannao: Shifting Vision Processing Closer to the Sensor[C]//International Symposium on Computer Architecture, 2015: 92–104 [Google Scholar]
  11. Jouppi N, Young C, Patil N, et al. In-Datacenter Performance Analysis of a Tensor Processing Unit[C]//International Symposium on Computer Architecture, 2017: 1–12 [Article] [Google Scholar]
  12. Jia Y, Shelhamer E, Donahue J, et al. Caffe: Convolutional Architecture for Fast Feature Embedding[C]//ACM International Conference on Multimedia, 2014: 675–678 [Article] [Google Scholar]
  13. Krizhevsky A, Hinton G. Learning Multiple Layers of Features from Tiny Images[R]. Technical Report TR-2009 [Google Scholar]
  14. Khosla A, Jayadevaprakash N, Yao B, et al. Novel Dataset for Fine-Grained Image Categorization[C]//First Workshop on Fine-Grained Visual Categorization, IEEE Conference on Computer Vision and Pattern Recognition Colorado Springs, 2011 [Google Scholar]
  15. Everingham M, Eslami S, Van G, et al. The Pascal Visual Object Classes Challenge:A Retrospective[J]. International Journal of Computer Vision, 2015, 111(1): 98–136 [Article] [CrossRef] [Google Scholar]
  16. Satellite Imaging Corporation. WorldView-3 Satellite Sensor[EB/OL].(2018-02-06)[2019-01-02]. [Article] [Google Scholar]
  17. Zhang C, Li P, Sun G, et al. Optimizing FPGA-Based Accelerator Design for Deep Convolutional Neural Networks[C]//ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 2015: 161–170 [Article] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.