Open Access
Volume 38, Number 1, February 2020
Page(s) 58 - 67
Published online 12 May 2020
  1. Van Dam C P. The Aerodynamic Design of Multi-Element High-Lift Systems for Transport Airplanes[J]. Progress in Aerospace Sciences, 2002, 38(2): 101–144 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  2. Werner-Spatz C, Heinze W, Horst P, et al. Multidisciplinary Conceptual Design for Aircraft with Circulation Control High-Lift Systems[J]. CEAS Aeronautical Journal, 2012, 3(2/3/4): 145–164 [Article] [CrossRef] [Google Scholar]
  3. Petrov A V. Aerodynamics of STOL Airplanes with Powered High-Lift Systems[C]//Proceedings of the ICAS 2012 Congress, Brisbane, Australia, 2012 [Google Scholar]
  4. Radespiel R, Burnazzi M, Casper M, et al. Active Flow Control for High Lift with Steady Blowing[J]. The Aeronautical Journal, 2016, 120(1223): 171–200 [Article] [CrossRef] [Google Scholar]
  5. Zhu Ziqiang, Wu Zongcheng. Study of the Circulation Control Technology[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2): 411–428 [Article] (in Chinese) [Google Scholar]
  6. Zhang Liu, Jiang Yubiao, Huang Yong, et al. Lift build-Up on Internally Blown Flap[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 121807 [Article] (in Chinese) [Google Scholar]
  7. Françis D G, Radespiel R, Semaan R. Numerical Investigations of Spanwise-Varied Unsteady Coanda Actuation on High-Lift Configuration[J]. Journal of Aircraft, 2018, 55(4): 1720–1730 [Article] [CrossRef] [Google Scholar]
  8. BURNAZZI M, Radespiel R. Design and Analysis of a Droop Nose for Coanda Flap Applications[J]. Journal of Aircraft, 2014, 51(5): 1567–1579 [Article] [CrossRef] [Google Scholar]
  9. RADESPIEL R, Burnazzi M. Active Flow and Combustion[M]. Berlin: Springer, 2015, 101–114 [Google Scholar]
  10. Jensch C, PFINGSTEN K C, RADESPIEL R, et al. Design Aspects of a Gapless High-Lift System with Active Blowing[C]//Proceedings of Deutscher Luft-und Raumfahrtkongress, Bonn, 2009: 8–10 [Google Scholar]
  11. Wang Miaoxiang, Sun Weiping, Qin Hejun. Optimization Design of an Internal Blown Flap Used in Large Amphibian[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 300–309 [Article] (in Chinese) [Google Scholar]
  12. Lane K A, Marshall D D. A Surface Parameterization Method for Airfoil Optimization and High Lift 2D Geometries Utilizing the CST Methodology[J]. AIAA Paper, 2009, 1461: 5–8 [Article] [Google Scholar]
  13. WANG Xu, Cai Jinsheng, Qu Kun, et al. Airfoil Optimization Based on Improved CST Parametric Method and Transition Model[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 449–461 [Article] (in Chinese) [Google Scholar]
  14. Chen Song, BAI Junqiang, Sun Zhiwei, et al. Aerodynamic Optimization Design of Airfoil Using DFFD Technique[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3): 695–705 [Article] (in Chinese) [Google Scholar]
  15. Guo B, BAI J, SHI Y. Optimization Design of Hybird Laminar Flow Control Airfoil Using Directly Manipulated Free-Form Deformation Technique[C]//8th International Conference on Mechanical and Intelligent Manufacturing Technologies, 2017: 221–224 [Google Scholar]
  16. Zhang Yang. A New Turbulence Model for External Flow Simulation of Aircraft[D]. Xi'an: Northwestern Polytechnical University, 2014(in Chinese) [Google Scholar]
  17. Menter F, Kuntz M, Langtry R. Ten Years of Industrial Experience with the SST Turbulencemodel[J]. Turbulence, Heat and Mass Transfer, 2003, 4: 101–109 [Google Scholar]
  18. Englar R J, JONES G S, ALLAN B G, et al. 2-D Circulation Control Airfoil Benchmark Experiments Intended for CFD Code Validation[C]//47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2009: 902 [Google Scholar]
  19. Shields M D, ZHANG J. The Generalization of Latin Hypercube Sampling[J]. Reliability Engineering & System Safety, 2016, 148: 96–108 [Article] [CrossRef] [Google Scholar]
  20. Niu J, Lei J, He J. Radial Basis Function Mesh Deformation Based on Dynamic Control Points[J]. Aerospace Science and Technology, 2017, 64: 122–132 [Article] [CrossRef] [Google Scholar]
  21. Liu Yan. Aeroelasticity Analysis Method and Optimization Design for Aircraft Wing with Variable Camber Continuous Trailing Edge[D]. Xi'an: Northwestern Polytechnical University, 2014(in Chinese) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.