Open Access
Issue
JNWPU
Volume 38, Number 2, April 2020
Page(s) 319 - 324
DOI https://doi.org/10.1051/jnwpu/20203820319
Published online 17 July 2020
  1. Guo Huimin. Research of Ecological Textile Technology Application in the CivilI Aircraft Cabin Design[D]. Shanghai: Donghua University, 2016(in Chinese) [Google Scholar]
  2. Federal Aviation Administration. 14 CFR Part 25, §25.841-Pressurized Cabins[EB/OL].(2014-11-04)[2019-03-03]. https://www.ecfr.gov/cgi-bin/text-idx?node=pt14.1.25&rgn=div5#se14.1.25_1841 [Google Scholar]
  3. Mcalevy R F, Magee R S. The Mechanism of Flame Spreading over the Surface of Igniting Condensed-Phase Materials[J]. Symposium on Combustion, 1968, 12 (1): 215– 227 [Article] [CrossRef] [Google Scholar]
  4. Goldmeer J S, T'ien J S, Urban D L. Combustion and Extinction of Pmma Cylinders during Depressurization in Low-Gravity[J]. Fire Safety Journal, 1999, 32 (1): 61– 88 [Article] [CrossRef] [Google Scholar]
  5. Kong Wenjun, Lao Shiqi, Zhang Peiyuan, et al. Study on Wire Insulation Flammability at Microgravity by Functional Simulation Method[J]. Journal of Combustion Science and Technology, 2006, 12 (1): 1– 4 [Article] [Google Scholar]
  6. Saitok K. Progress in Scale Modeling[M]. Berlin: Springer Netherlands, 2008 [CrossRef] [Google Scholar]
  7. Nakamura Y, Yoshimura N, Ito H, et al. Flame Spread over Electric Wire in Sub-Atmospheric Pressure[J]. Proceedings of the Combustion Institute, 2009, 32 (2): 2559– 2566 [Article] [CrossRef] [Google Scholar]
  8. Hu L, Zhang Y, Yoshioka K, et al. Flame Spread over Electric Wire with High Thermal Conductivity Metal Core at Different Inclinations[J]. Proceedings of the Combustion Institute, 2015, 35 (3): 2607– 2614 [Article] [CrossRef] [Google Scholar]
  9. Hu L, Lu Y, Yoshioka K, et al. Limiting Oxygen Concentration for Extinction of Upward Spreading Flames over Inclined Thin Polyethylene-Insulated Nicr Electrical Wires with Opposed-Flow under Normal-And Micro-Gravity[J]. Proceedings of the Combustion Institute, 2016, 36 (2): 3045– 3053 [Article] [CrossRef] [Google Scholar]
  10. Hirsch D, Williams J, Beeson H. Pressure Effects on Oxygen Concentration Flammability Thresholds of Polymeric Materials for Aerospace Applications[J]. Journal of Testing & Evaluation, 2006, 36 (1): 69– 72 [Article] [Google Scholar]
  11. Hirsch D, Williams J, Harper S, et al. Pressure Flammability Thresholds of Selected Aerospace Materials[C]//International Conference on Environmental Systems, 2010 [Google Scholar]
  12. Mcallister S, Fernaadez-Pello C, Urban D, et al. Piloted Ignition Delay of Pmma In Space Exploration Atmospheres[J]. Proceedings of the Combustion Institute, 2009, 32 (2): 2453– 2459 [Article] [CrossRef] [Google Scholar]
  13. Mcallister S, Fernandez-Pello C, Urban D, et al. The Combined Effect of Pressure and Oxygen Concentration on Piloted Ignition of a Solid Combustible[J]. Combustion & Flame, 2010, 157 (9): 1753– 1759 [Article] [CrossRef] [Google Scholar]
  14. Fereres S, Lautenberger C, Fernandez-Pello C, et al. Mass Flux at Ignition in Reduced Pressure Environments[J]. Combustion & Flame, 2011, 158 (7): 1301– 1306 [Article] [CrossRef] [Google Scholar]
  15. Osorio A F, Fernandez-Pello C, Urband L, et al. Limiting Conditions for Flame Spread in Fire Resistant Fabrics[J]. Proceedings of the Combustion Institute, 2013, 34 (2): 2691– 2697 [Article] [CrossRef] [Google Scholar]
  16. Zong R, Kang R, Hu Y, et al. Modeling the Pyrolysis Study of Non-Charring Polymers under Reduced Pressure Environments[J]. Heat & Mass Transfer, 2018, 54 (4): 1135– 1144 [Article] [CrossRef] [Google Scholar]
  17. Shi L, Chew M Y L, Liu X, et al. An Experimental and Numerical Study on Fire Behaviors of Charring Materials Frequently Used in Buildings[J]. Energy & Buildings, 2017, 138: 140– 153 [Article] [CrossRef] [Google Scholar]
  18. Thomsen M, Murphy D C, Fernandez-Pello C, et al. Flame Spread Limits(LOC) of Fire Resistant Fabrics[J]. Fire Safety Journal, 2017, 91: 259– 265 [Article] [CrossRef] [Google Scholar]
  19. Kansa E J, Perlee H E, Chaiken R F. Mathematical Model of Wood Pyrolysis Including Internal Forced Convection[J]. Combustion & Flame, 1977, 29 (3): 311– 324 [Article] [CrossRef] [Google Scholar]
  20. Blasi C D. Modeling and Simulation of Combustion Processes of Charring and Non-Charring Solid Fuels[J]. Progress in Energy & Combustion Science, 1993, 19 (1): 71– 104 [Article] [CrossRef] [Google Scholar]
  21. Qie Junfang. Experimental Study of the Influences of Orientation and Altitude on Pyrolysis and Ignition of Solid Combustibles[D]. Hefei: University of Science and Technology of China, 2011(in Chinese) [Google Scholar]
  22. Dai J, Yang L, Zhou X, et al. Experimental and Modeling Study of Atmospheric Pressure Effects on Ignition of Pine Wood at Different Altitudes[J]. Energy & Fuels, 2010, 24 (1): 609– 615 [Article] [CrossRef] [Google Scholar]
  23. Lautenberger C, Torero J, Fernandez-Pello C. Understanding Materials Flammability//Flammability Testing of Materials Used in Construction Transport & Mining[M]. UK, Woodhead Rublishing: 2006: 1– 21 [Google Scholar]
  24. Quintiere J G. Ignition of Liquids//Fundamentals of Fire Phenomena[M]. New York: John Wiley & Sons, Ltd, 2006: 135– 158 [CrossRef] [Google Scholar]
  25. Torero J. Flaming Ignition of Solid Fuels//SFPE Handbook of Fire Protection Engineering[M]. New York: Springer, 2016: 633– 661 [CrossRef] [Google Scholar]
  26. Annaratone D. Introduction to Heat Transfer//Engineering Heat Transfer[M]. Berlin: Heidelberg, Springer-Verlag, 2010: B37– B38 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.