Open Access
Volume 38, Number 2, April 2020
Page(s) 341 - 350
Published online 17 July 2020
  1. Huo Dajun. Operation of Network Swarm[M]. Beijing: National Defence University Press, 2013 (in Chinese) [Google Scholar]
  2. Zhao Shanghong, Chen Kefan, Lyu Na, et al. Software Defined Airborne Tactical Network for Aeronautic Swarm[J]. Journal on Communications, 2017(8): 140–155 [Article] [Google Scholar]
  3. Liang Yixin, Cheng Guang, Guo Xiaojun, et al. Research Progress on Architecture and Protocol Stack of the Airborne Network[J]. Journal of Software, 2016, 27(1): 96–111 [Article] (in Chinese) [Google Scholar]
  4. Estan C, Varghese G. New Directions in Traffic Measurement and Accounting[J]. ACM Transactions on Computer Systems, 2003, 21(3):270–313 10.1145/859716.859719 [CrossRef] [Google Scholar]
  5. Mori T, Uchida M, Kawahara R, et al. Identifying Elephant Flows through Periodically Sampled Packets[C]//The Institute of Electronics, Information and Communication Engineers, 2004 [Google Scholar]
  6. Bai Lei Tian Liqin Chen Chao. Elephant Flow Detection Algorithm for High Speed Networks Based on Flow Sampling and LRU[J]. Computer Applications and Software, 2016(4): 111–115 [Article] [Google Scholar]
  7. Huang Y H, Shih W Y, et al. A Classification-Based Elephant Flow Detection Method Using Application Round on SDN Environment[C]//Asia-Pacific Nework Operation and Management Symposium, 2017 [Google Scholar]
  8. Moore A W, Zuev D. Internet Traffic Classification Using Bayesian Analysis Techniques[J]. ACM Sigmetrics Performance Evaluation Review, 2005, 33(1): 50 10.1145/1071690.1064220 [CrossRef] [Google Scholar]
  9. WU K, KE J. A Scheme of Real-Time Traffic Classification in Secure Accsee of Power Enterprise Based on Improved Naïve Bayesian Classification Algorithm[C]//IEEE Internationnal Conference on Software Engineering & Service Science, 2017 [Google Scholar]
  10. Xu Peng, Lin Sen. Internet Traffic Classification Using C4.5 Decision Tree[J]. Journal of Software, 2009, 20(10): 2692–2704 [Article] (in Chinese) [CrossRef] [Google Scholar]
  11. Tong Da, Qu Y R, Prasanna V K. Accelerating Decision Tree Based Traffic Classification on FPGA and Multicore Platforms[J]. IEEE Trans on Parallel & Distributed Systems, 2017, 28(11): 3046–3059 [Article] [CrossRef] [Google Scholar]
  12. Cao Jie, Fang Zhiyi, Qu Guannan, et al. An Accurate Traffic Classification Model Based on Support Vevtor Machines[J]. Networks, 2017, 27(1): 1962 [Article] [Google Scholar]
  13. Sun Guanglu, Chen Teng, Su Yangyang, et al. Internet Traffic Classification Based on Incremental Support Vector Machines[J]. Mobile Networks & Applications, 2018, 23(14): 1–8 [Article] [CrossRef] [Google Scholar]
  14. Doguc O, Ramirez, Marquez J E. A Generic Method for Estimating System Reliability Using Bayesian Networks[J]. Reliability Engineering & System Safety, 2017, 94(2): 542- 550 [Article] [CrossRef] [Google Scholar]
  15. Friedman Nir, Geiger D, Goldszmidt M. Bayesian Network Classifiers[J]. Machine Learning, 1997, 29(2/3): 131–163 10.1023/A:1007465528199 [CrossRef] [Google Scholar]
  16. Ng W W, Hu J, Yeung D S, et al. Diversified Sensitivity-Based Undersampling for Imbalance Classification Problems[J]. IEEE Trans on Cybernetics, 2017, 45(11): 2402–2412 [Article] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.