Open Access
Volume 38, Number 3, June 2020
Page(s) 571 - 579
Published online 06 August 2020
  1. Cheng Xiaoliang, Li Jie. Unsteady Computational Method for the Propeller/Wing Interaction[J]. Science Technology and Engineering, 2011 (14): 113– 119 [Article] [Google Scholar]
  2. Xia Zhenfeng, Yang Yong. Unsteady Numerical Simulation of Interaction Effects of Propeller and Wing[J]. Acta Aeronautica et Astronautica Sinica, 2012, 32 (1): 76– 79 [Article] [Google Scholar]
  3. Xu Jianhua, Song Wenping, Han Zhonghua, et al. Aerodynamic Performance Research of Propellers Based on CFD Technology[J]. Journal of Aerospace Power, 2010 (5): 147– 153 [Article] [Google Scholar]
  4. Chuiton F L. Actuator Disc Modeling for Helicopter Rotors[J]. Aerospace Science and Technology, 2004, 8 (4): 285– 297 [Article] [CrossRef] [Google Scholar]
  5. Veldhuis L L M. Propeller Wing Aerodynamic Interference[C]//24th International Congress of the Aeronautical Sciences, 2005 [Google Scholar]
  6. Horsten B J C, Veldhuis L L M. Engine Power Effects on Support Interference[J]. World Academy of Science, Engineering and Technology, 2009, 3 (10): 1245– 1254 [Google Scholar]
  7. Zuo Suihan, Yang Yong, Xu Jing. Study on the Method of Turbo-Propeller Slipstream Simulation by Actuator Disk Model[C]//Conference on Computational Physics in the Northwest Region, 2008: 262–267(in Chinese) [Google Scholar]
  8. Li Bo, Liang Dewang, Huang Guoping. Propeller Slipstream Effects on Aerodynamic Performance of Turbo-Prop Airplane Based on Equivalent Actuator Disk Mode[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29 (4): 845– 852 [Article](in Chinese) [Google Scholar]
  9. Cao Dong, Cao Yihua. Three Dimensional Numerical Simulation of Rotor in Vertical Descent Flight[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38 (5): 641– 647 [Article](in Chinese) [Google Scholar]
  10. Rajagopalan R G, Lim C K. Laminar Flow Analysis of a Rotor in Hover[J]. Journal of the American Helicopter Society, 1991, 36 (1): 12– 23 [Article] [CrossRef] [Google Scholar]
  11. Zori L A J, Rajagopalan R G. Navier-Stokes Calculations of Rotor-Airframe Interaction in Forward Flight[J]. Journal of the American Helicopter Society, 1995, 40 (2): 57– 67 [Article] [CrossRef] [Google Scholar]
  12. Chaffin M S, Berry J D. Navier-Stokes Simulation of a Rotor Using a Distributed Pressure Disk Method[C]//Proceedings of 51st Annual Forum of American Helicopter Society, 1995 [Google Scholar]
  13. O'Brien D, Smith M. Analysis of Rotor-Fuselage Interactions Using Various Rotor Models[C]//43rd AIAA Aerospace Science Meeting and Exhibit, Reno, 2005 [Google Scholar]
  14. Kang Ning, Sun Mao. Navier-Stokes Calculations of Wake and Ground Vortex Induced by a Rotor in Forward Flight with Ground Effects[J]. Acta Aeronautica et Astronautica Sinica, 1996, 17 (7): S7– S12 [Article](in Chinese) [Google Scholar]
  15. Tong Zili, Sun Mao. Navier-Stokes Calculations of Coaxial Rotor Aerodynamics[J]. Acta Aeronautica et Astronautica Sinica, 1999, 19 (1): 1– 5 [Article](in Chinese) [Google Scholar]
  16. Song Changhong, Lin Yongfeng, Chen Wenxuan, et al. CFD Analysis for the Ducted Tail Rotor Based on Momentum Source Method[J]. Helicopter Technique, 2009 (1): 6– 11 [Article](in Chinese) [Google Scholar]
  17. Cheng Baofeng. Numerical Analysis on Interactional Field among Tilt-Rotor/Wing/Fuselage[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010(in Chinese) [Google Scholar]
  18. Kim Y H, Park S O. Navier-Stokes Simulation of Unsteady Rotor-Airframe Interaction with Momentum Source Method[J]. International Journal of Aeronautical & Space Sciences, 2009, 10 (2): 125– 133 [Article] [CrossRef] [Google Scholar]
  19. Kim Y H, Park S O. Unsteady Momentum Source Method for Efficient Simulation of Rotor Aerodynamics[J]. Journal of Aircraft, 2013, 50 (1): 324– 327 [Article] [CrossRef] [Google Scholar]
  20. Guntupalli K. Development, Validation and Verification of the Momentum Source Model for Discrete Rotor Blades[D]. Ames: Iowa State University, 2011 [Google Scholar]
  21. Guntupalli K, Rajagopalan R G. Development of Discrete Blade Momentum Source Method for Rotors in an Unstructured Solver[C]//AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, 2012 [Google Scholar]
  22. Zhao Qijun, Xu Guohua. Foundations of Helicopter Computational Fluid Dynamics[M]. Beijing: Science Press, 2016: 243– 346 [Google Scholar]
  23. Zhu Qiuxian. Aerodynamic Analysis and Optimal Design of Tilt-Rotor Aircraft Based on an Unsteady Momentum Source Method[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016: 24–27(in Chinese) [Google Scholar]
  24. Caradonna F X, Tung C. Experiment and Analytical Studies of a Model Helicopter Rotor in Hover[R]. NASA TM-81232, 1981 [Google Scholar]
  25. Katz J, Plotkin A. Low-Speed Aerodynamics[D]. Cambs: Cambridge University Press, 2001: 101– 114 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.