Open Access
Issue
JNWPU
Volume 38, Number 4, August 2020
Page(s) 881 - 888
DOI https://doi.org/10.1051/jnwpu/20203840881
Published online 06 October 2020
  1. GONG Changsheng, ZHANG Keli. New Functional Materials[M]. Beijing: Chemical Industry Press, 2001 (in Chinese) [Google Scholar]
  2. ZHANG Jingshang, ZHANG Hao, CHEN Geng, et al. Metaland Alloy Materials Handbook[M]. Beijing: Golden Shield Press, 2005 (in Chinese) [Google Scholar]
  3. ZHAO Liancheng, CAI Wei, ZHENG Yufeng. Shape Memory Effect and Superelasticity of Alloy[M]. Beijing: National Defense Industry Press, 2002 (in Chinese) [Google Scholar]
  4. He Zhirong, WANG Fang, ZHOU Jing'en. Research Progress on Shape Memory Effect and Engineering Application of Tini Alloy[J]. Transactions of Materials and Heat Treatment, 2005, 26 (5): 21– 27 [Article] (in Chinese) [Google Scholar]
  5. LIANG C. The Constitutive Modeling of Shape Memory Alloys[D]. Virginia: Virginia Polytechnic Institute and State University, 1990, 24 [Google Scholar]
  6. AKHIL Bhardwaj, AMIT Kumar Gupta, SHANTHAN Kumar Padisala, et al. Characterization of Mechanical and Microstructural Properties of Constrained Groove Pressed Nitinol Shape Memory Alloy for Biomedical Applications[J]. MaterialsScience & Engineering, 2019, 102 (102): 730– 742 [Article] [Google Scholar]
  7. DONATELLD Cardone, RICCARDD Angiuli, GIUSEPPE Gesualdi. Application of Shape Memory Alloys in Historical Constructions[J]. International Journal of Architectural Heritage, 2019, 13 (3): 390– 401 [Article] [CrossRef] [Google Scholar]
  8. JIANG Hong, WANG Wei, WANG Hui, et al. Analysis on the Development of Intelligent Materials at Home and Abroad[J]. Advanced Materials Industry, 2014, 5: 2– 9 [Article] (in Chinese) [Google Scholar]
  9. SHAHIRNIA M, FARHAT Z, JARJOURA G. Effects of Temperature and Loading Rate on the Deformation Characteristics of Superelastic TiNi Shape Memory Alloys under Localized Compressive Loads[J]. Materials Science & Amp, Engineering A, 2011, 530: 628– 632 [Article] [CrossRef] [Google Scholar]
  10. FLOR S, URBINA C, FERRANDO F. Asym Metrical Bending Model for NiTi Shape Memory Wires:Numerical Simulations and Experimental Analysis[J]. Strain, 2011, 47 (3): 255– 267 [Article] [CrossRef] [Google Scholar]
  11. SHANG Zejin, WANG Zhongming. Nonlinear Bending Deformation of Shape Memory Alloy Beam[J]. Journal of Mechanical Engineering, 2011, 47 (18): 28– 32 [Article] (in Chinese) [Google Scholar]
  12. AURICCHIO F, SACCO E. A One-Dimensional Model for Super Elastic Shape-Memory Alloys with Different Elastic Properties between Austenite and Martensite[J]. International Journal of NonLinear Mechanics, 1997, 32 (6): 1101– 1114 [Article] [CrossRef] [Google Scholar]
  13. HELM D, HAUPT P. Thermomechanical Behavior of Shape Memory Alloys[C]//SPIE's 8th Annual International Symposium on Smart Structures and Materials, 2001 [Google Scholar]
  14. AHMADREZA E, MOHAMMAD E. Exact Solution for Bending of Shape Memory Alloy Superelastic Beams[C]//Proceedings of the ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent System, 2011 [Google Scholar]
  15. SOUZA A C, MAMIYA E N, ZOUAIN N. Three-Dimenional Model for Solids Undergoing Stress-Induced Phase Transformations[J]. European Journal of Mechanics-A/Solids, 1998, 17 (5): 789– 806 [Article] [CrossRef] [Google Scholar]
  16. CUI Shitang, JIANG Xiquan, YAN Jun. Theoretical Analysis of Shape Memory Alloy Beam Subjected to Pure Bending[J]. Journal of Applied Mechanics, 2016, 33 (1): 43– 49 [Article] (in Chinese) [Google Scholar]
  17. REN Yongsheng, TIAN Jishuang, LIU Yinlei, et al. Nonlinear Deformation, Thermal Buckling and Vibration of SMA Fiber Composite Beams[J]. Journal of Shandong University of Science and Technology, 2019, 38 (1): 99– 110 [Article] (in Chinese) [Google Scholar]
  18. HAN Tixin, ZENG Xiangguo, CHEN Huayan, et al. Tests of Dynamic Mechanical Properties for TiNi Shape Memory Alloy[J]. Rare Metal Materials and Engineering, 2017, 46 (suppl 1): 45– 50 [Article] (in Chinese) [CrossRef] [Google Scholar]
  19. ATANACKOVIC T, ACHENBACH M. Moment Curvature Relations for a Pseudoelastic Beam[J]. Continuum Mechanics and Thermodynamics, 1989, 11 (1): 73– 80 [Article] [CrossRef] [Google Scholar]
  20. MIRZAEIFAR R, DESROCHES R, YAVARI A, et al. On Superelastic Bending of Shape Memory Alloy Beams[J]. International Journal of Solids and Structures, 2013, 50 (10): 1664– 1680 [Article] [CrossRef] [Google Scholar]
  21. AURICCHIO F, MORGANTI S, REALI A, et al. Theoretical and Experimental Study of the Shape Memory Effect of Beams in Bending Conditions[J]. Journal of Materials Engineering & Performance, 2011, 20 (4/5): 712– 718 [Article] [CrossRef] [Google Scholar]
  22. REEDLUNN B, CHURCHILL C B, NELSON E E, et al. Tension, Compression, and Bending of Superelastic Shape Memory Alloy Tubes[J]. Journal of the Mechanics and Physics of Solids, 2014, 63: 506– 537 [Article] [CrossRef] [Google Scholar]
  23. RAO Min, YUAN Xiuwen, ZHANG Cheng. Finite Element Analyses of Cold-Formed Thin-Walled C-Section Steel Members with Web Holes under Non-Pure Bending Condition[J]. Shanxi Architecture, 2018, 44 (18): 40– 41 [Article] (in Chinese) [Google Scholar]
  24. YANG Jingning, WANG Jichang, MA Liansheng. Deformation Characteristics of Shape Memory Alloy Beam under Thermal and Mechanical Loads[J]. Chinese Journal of Rare Metals, 2018, 42 (10): 1032– 1039 [Article] (in Chinese) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.